Regulatory Experience in Reviewing the FPGA-based Controller in Korea

YONG-IL KWON (k722kyi@kins.re.kr)

I&C and Electrical Evaluation Department of KINS

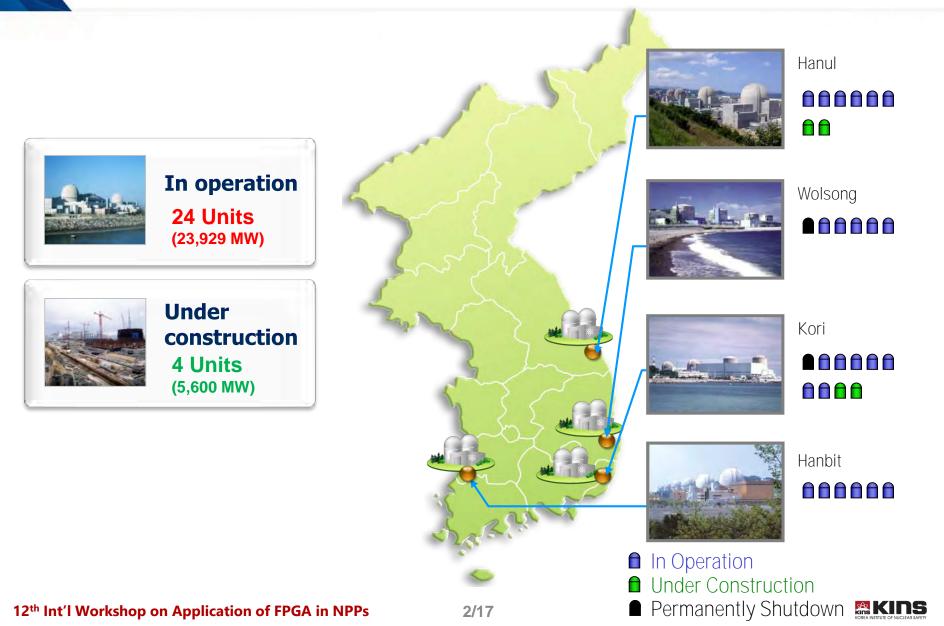
Independence

KINS is a Cornerstone for a Safe Korea

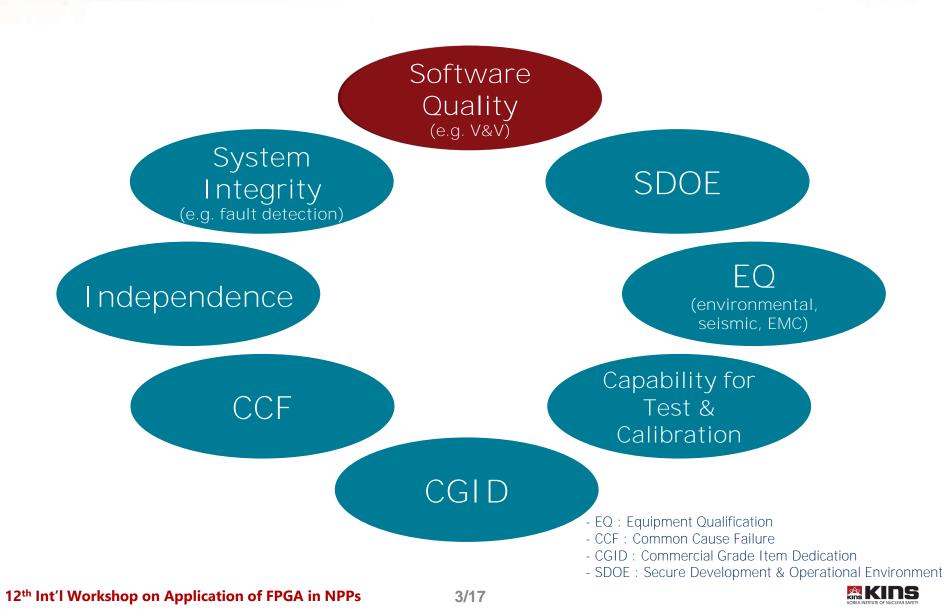
Contents

Current Status of NPPs in Korea

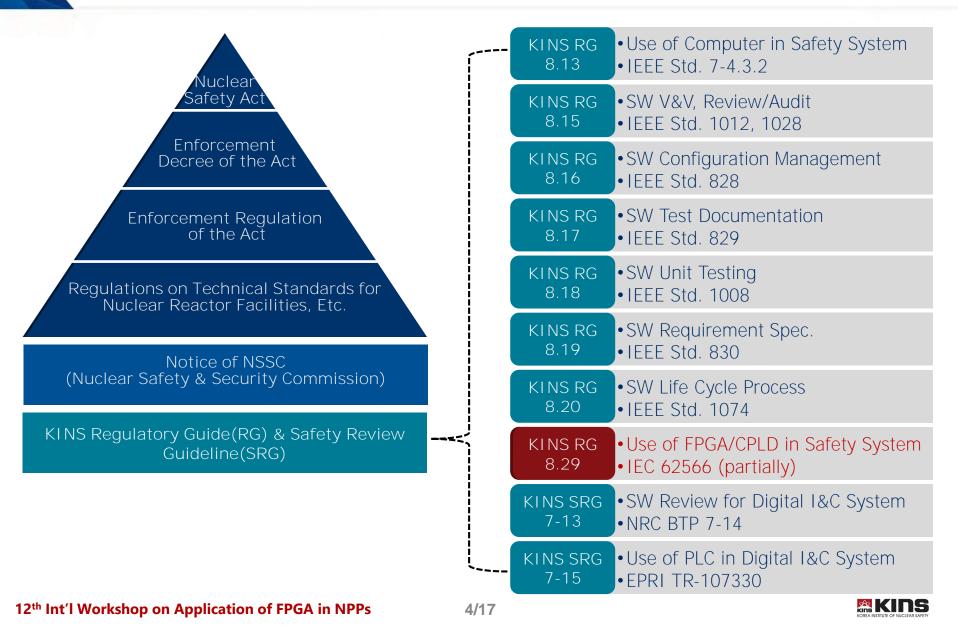
Regulatory Bases


Use of International Standards

KINS Reg. Guide for FPGA review


KINS Review Experience

Summary


Current Status of NPPs in Korea

Topics for Reviewing Digital I&C Systems

Legal System of Nuclear Safety Regulation

Int'l Standards and Reports for FPGA Systems

- IEC 62566, "Nuclear Power Plants Instrumentation and Control Important to Safety - Development of HDL-Programmed Integrated Circuits for Systems
 Performing Category A Functions", 2012
- IAEA, NO. NP-T-3.17, "Application of Field programmable Gate Arrays in Instrumentation and Control Systems of NPPs", 2016
- NUREG/CR-7006, "Review Guidelines for FPGAs in NPP Safety Systems", 2010
- EPRI TR-1019181, "Guidelines on the Use of Field Programmable Gate Arrays (FPGAs) in Nuclear Power Plant I&C Systems", 2009
- OECD/NEA MDEP(Multinational Design Evaluation Program), Generic Common Position, No. DICWG-05, "Common Position on the Treatment of HDL-programmed Devices for Use in Nuclear Safety Systems", 2013

Review of Software Quality (1/2)

NRC SRP BTP 7-14, "Guidance on S/W Reviews for Digital Computer-Based I&C Systems"

Planning	Require.	Design	Implement.	Integration	Validation	Installation	Operation/ Maintenance
Management	Requirement	Design	• Coding	System Build		• Operation,	
• Development	Specification	Specification	Listings	Documents		Maintenance	
• QA		•H/W, S/W				and Training	
 Integration 		Architecture				Manuals	
 Installation 						 Installation 	
Maintenance						Configuration	
Training						Tables	
 Operation 	Design Outputs						
 Safety 	For each life cycle phase						
• V&V	Safety Analysis						
• Test	V&V(Verification & Validation)						
• CM	• CM(Configuration Management)						
Process Planning	Process Implementation						

Review of Software Quality (2/2)

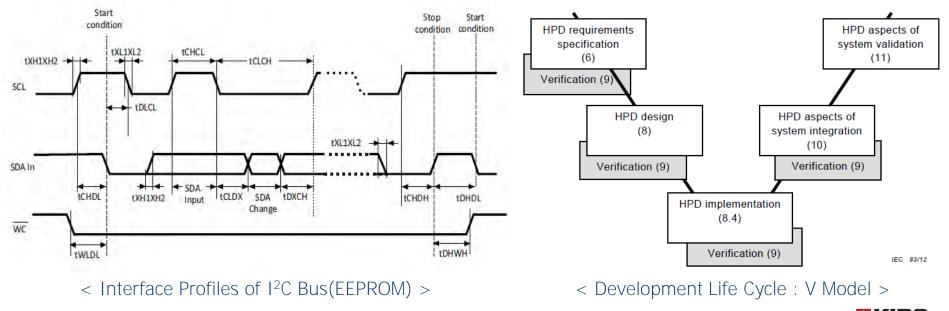
◆ IEEE Std. 1012-2004, "IEEE Standards for S/W Verification and Validation"

Requirement	Design	Implementation/ Integration	Validation(Test)	
 Traceability Analysis 	 Traceability Analysis 	Traceability Analysis	Traceability Analysis	
 Security Analysis 	 Security Analysis 	Security Analysis	Security Analysis	
Hazard/Risk Analysis	Hazard/Risk Analysis	Hazard/Risk Analysis	Hazard/Risk Analysis	
Requirement Evaluation	Design Evaluation	Source Code Evaluation		
•Test Plan	•Test Plan	Test Procedure	Test Procedure	
- System	- Component	- Component	- Acceptance	
- Acceptance	- Integration	- Integration	Test Execution	
		- System	- Integration	
		Test Execution	- System	
		- Component	- Acceptance	

Use of IEC 62566 (1/2)

Phase	SRP BTP 7-14 & IEEE Std. 1012	Related Int'l Standards	IEC 62566	
Requirement	Requirement Specification & Evaluation	• IEEE Std. 7-4.3.2 • IEEE Std. 830	Ch. 6, "HPD Requirements Specification"	
Design	Design Specification & Evaluation	• IEEE Std. 7-4.3.2 • IEEE Std. 829	Ch. 8, "HPD Design & Implementation"	
Implement., Integration	Source Code & EvaluationComponent Test Execution	• IEEE Std. 1008	Ch. 9, "HPD Verification"	
	S/W & H/W IntegrationIntegration Test Execution		Ch. 10, "HPD aspects of System Integration"	
Validation (Test)	System Test Execution	• IEEE Std. 7-4.3.2 • IEEE Std. 829	Ch. 11, "HPD aspects of System Validation"	
	 Acceptance Test Execution 		Ch. 13, "HPD Production"	

Use of IEC 62566 (2/2)

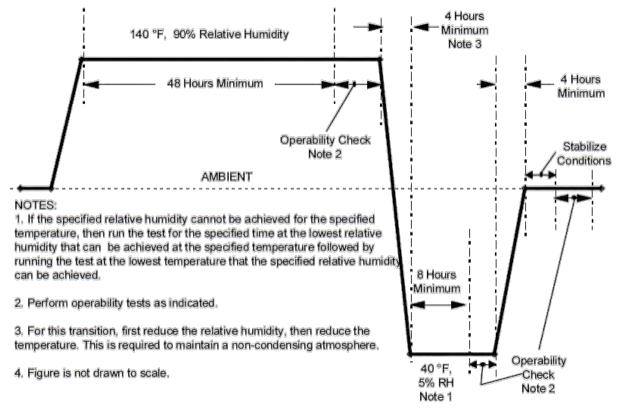

The existing standards for the below topics can be fully applied to both 'FPGA' and 'micro-processor'. No more requirements for the topics are necessary.

Other Topics of IEC 62566	Existing Standards for Digital I&C Systems		
S/W Life Cycle Process (Ch. 5)	• IEEE Std. 1074		
S/W QA Plan (Ch. 5)	• IEEE Std. 730		
S/W CM Plan (Ch. 5)	• IEEE Std. 828		
CGID (Ch. 7)	EPRI TR-106439, 3002002982NRC RG 1.164		
S/W Tool Qualification (Ch. 15)	• IEEE Std. 7-4.3.2		
CCF (Ch. 17)	IEEE Std. 7-4.3.2NRC SRP BTP 7-19		

KINS Reg. Guide 8.29 (1/2)

- A requirement specification shall be written in accordance with IEEE Std. 830 and IEC 62566 Ch. 6.
- The followings shall be documented in the requirement specification.
 electrical and temporal performance(e.g. setup/hold time, operating frequency)
 profiles of interfaced signal and power supplies
- They will be used as acceptance criteria for the validation test.

12th Int'l Workshop on Application of FPGA in NPPs


KINS Reg. Guide 8.29 (2/2)

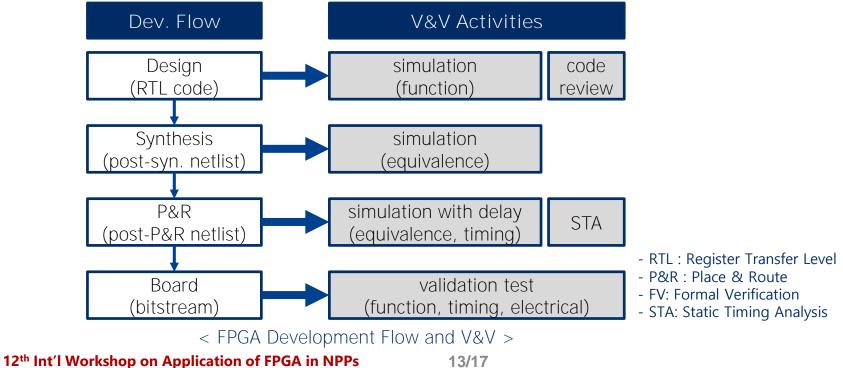
- The FPGA shall be designed/implemented/integrated in compliance with IEC 62566 Ch. 8 and Ch. 10.
- The unit test shall be conducted to meet the requirements of IEC 62566 Ch. 8 and Ch. 9.
- The test-bench for functional simulation of RTL code should have 100% code coverages for statement, branch, expression(condition) and FSM. If not, the documented justification shall be produced.
- The integration/system/acceptance test shall be carried out by IEC 62566 Ch. 10, Ch. 11 and Ch. 13, respectively.

Regulatory Positions (1/2)

To ensure the timing constraints are practically met, the type test shall be performed for normal and abnormal service conditions(e.g. temperature, supply voltage) in accordance with IEEE Std. 323.

< Temp./Humidity Profile of EPRI TR-107330 >

12th Int'l Workshop on Application of FPGA in NPPs


12/17

Regulatory Positions (2/2)

- Although there's no HDL code revision, the change in pin allocation or constraints(e.g., timing, fan-out) results in the different result of P&R.
- If they are changed, V&V activities for the affected design shall be carried out.
- The type test should be conducted again to verify the integrity of the revised design

within the service conditions such as temperature and supply voltage.

Under Review: DFLC-Q(Doosan FPGA Logic Controller)

- Software Classification : SIL 4 of IEEE Std. 1012(Safety-Critical, Class 1E)
- ◆ Target System : I&C safety system of PWR plants
- Application for approval of 2 topical reports(TR)
- \triangleright 2 stages : "planning ~ requirement" and "design ~ validation"
- Current Status of Review for the 1st TR (~ Oct. 2019)
- ▷ Reviewing the adequacy of the following documents
 - topical report, 12 planning documents, requirement specification
 - safety analysis, V&V and CM reports, etc.

Review for the TR (1/2)

- V&V(Verification & Validation)
- ▷ The SRS(Software Requirement Specification) shall be evaluated according to the criteria(e.g., accuracy, functionality, reliability, robustness, correctness, consistency, completeness) described in NRC SRP BTP 7-14 and IEEE Std. 1012.
- ▷A two-way trace shall exist between each requirement in the SRS and system requirements/design. Undocumented functionality in system documents shall not be introduced to the SRS.
- CM(Configuration Management)
- ▷All documents shall be uniquely identified as configuration items.
- ▷ Configuration control activities such as requesting changes, evaluating changes and approving changes shall be carried out in accordance with IEEE Std. 828.
- ▷ Configuration items and their information(e.g., publish date, revision #, reviewer)

shall be recorded in CM tools and reported to the configuration control board.

12th Int'l Workshop on Application of FPGA in NPPs

Review for the TR (2/2)

SA(Safety Analysis, IEEE Std. 1228)

 \triangleright A preliminary hazard analysis shall be carried out in the planning phase.

- \triangleright The preliminary hazard list was produced from system requirements and design. And for each hazard, its cause and effect were analyzed.
- \triangleright It should be evaluated that how the hazards can be detected and mitigated by software requirements.
- \triangleright Recommendations from the SA shall be reflected to the SRS and system test plan.
- SDOE(Secure Development and Operational Environment, NRC Reg. Guide 1.152)

 \triangleright In the planning phase, the licensee shall assess the digital safety system's potential

- susceptibility to inadvertent access and undesirable behavior from connected
- systems that could degrade its reliable operation.
- \triangleright Physical and technical security controls were derived from the assessment.

 \triangleright The software-related security controls(e.g., encryption) were described in the SRS. 12th Int'l Workshop on Application of FPGA in NPPs 16/17

Summary

- Introduce the Korean legal system for nuclear safety regulation and international standards/reports used for reviewing S/W quality.
- Activities to confirm S/W quality are totally different between micro-processor and FPGA systems because FPGA is originally hardware. We needed the supplementary requirements suitable for FPGA V&V review.
- Therefore we published KINS Reg. Guide 8.29 that endorses only FPGA-specific parts of IEC 62566 because of the possibility of conflict between IEEE and IEC requirements.
- Present KINS regulatory positions about the type tests carried out after FPGA design changes.
- ◆ Talk about KINS review experience in reviewing the FPGA-based controller(DFLC).

Q&A, Comment

Independence

Transparency

KOREA INSTITUTE OF NUCLEAR SAFETY

Excellence