12th International Workshop on Application of Field Programmable Gate Arrays in Nuclear Power Plants

Budapest, Hungary - October 2019

CNEA-I&C architecture design of FPGAbased Reactor Protection System for new Argentine reactors and other FPGA development experiences

CONTRACTOR OF CONT

Daniel Sebastián Estryk

destryk@cae.cnea.gov.ar

I&C Department

Comisión Nacional de Energía Atómica

Contents

- CNEA-I&C Department Introduction
- RPS Overview
- RPS Architecture
- Diverse FPGA Implementation
- Architecture Implementation
- Conclusions
- Other FPGA Developments

CNEA-I&C Department

CONTRACTOR OF THE OWNER OWNE

Introduction

- Placed in Ezeiza Atomic Center
- More than 40 years of developments
- Currently: 30 professionals, 9 technicians, 6 administrative
- ISO 9001:2015 Certification

\circ

CNEA-I&C Department

Current RPS Projects

- Primary RPS for CAREM25 (Prototype of Small Modular Reactor)
- RPS for RA10 (New Multipurpose Research Reactor)

RPS

Shared Requirements

- Safety Functions Category A (IEC 61226)
- System Class 1 (IEC 61513)
- Simple design
- Proven technology
- Independence
- Single Failure Criterion
- Self-check
- Fail Safe Design
- Testability
- Online Monitoring
- Manual and Automatic Trips
- Maintenance and Test features
- Demands several actuation systems

A CONTRACTOR OF A CONTRACTOR O

RPS

CNEA-I&C RPS main characteristics

- Digital Processing
- Diverse FPGA Implementation
- 2003 or 2004 Voting at two levels
- IEC 62566 life-cycle and V&V process

The state of the s

Modular Eurocard System

RPS 2004 Architecture for CAREM 25 NPP

RPS 2003 Architecture for RA10 MRR

Diverse FPGA Implementation

Common Cause Failure Issue

The Common Cause Failure (CCF) is an important issue in safety systems based on software and FPGA technology.

It is known that the *implementation of diversity reduces the probability of CCF occurrences* (IEC 61508 Part 7 Section B.1.4 and many other references).

A CONTRACTOR OF A CONTRACTOR O

Diverse FPGA Implementation

Diversification styles in CNEA-I&C RPS

- Developers team
- FPGA Manufacturer
- FPGA Technology
- FPGA software tools

Diverse FPGA Implementation Diversification styles in CNEA I&C RPS

- Diversification styles in CNEA I&C RPS
 - Each pair of modules works in parallel in the same train
 - There is no priority between diversities
 - Real-time cross-verification between diverse modules

Diverse FPGA Implementation

RPS Train

Analog To/From other trains Signal Digitalization **Conditioning** Module Trips Comparator Voting & **Diversity A** Optical Optical ASC 111 11 to **Trigger Logic** Module Drivers Fiber Fiber FALs **Diversity A Diversity A** Transmitter Receiver Digitalization 11 11 1 to 6 ASC Module Safetv **Diversity B** Signals ASC Set-points Verification **Digital Signal** Verification **Digital Signal** Conditioning Trips Hub E Optical Voting & Comparator Optical **Diversity A** to DSC 7 **Drivers** Trigger Logic Module Fiber Fiber FALs **Diversity B** Transmitter Receiver **Diversity B Digital Signal** 1 to 6 DSC Com-Hub **Diversity B** mands DSC Train Information Data Hub NI Digitalization Optical Train **Nuclear Diversity A** Fiber Full-state Instrumentation Transmitter datalink NI **System** Digitalization **Diversity B To Visualization Panels on** To Visualization Panels on **To Reactor Control Auxiliary Control Room** Main Control Room System ()()

torrest of the second s

Diverse FPGA Implementation

RPS Train

CONTRACTOR OF THE OWNER OWNER

CNED

Diverse FAL Implementation

Diversity resolve

In the second se

Full Redundant Train

Built on 3 Eurocard Sub-racks 19" Simple Height (3U)

TRANSPORT FOR FAILURE

Full Redundant Train

Capability	Maximum w/3 Sub-racks	For CAREM25	For RA10 MRR
Nuclear Instrumentation Chains Inputs	2	2	2
24V Digital Inputs	64	26	36
4-20mA Analog Inputs	30	18	11
24V @ 1A Digital Outputs	16	14	12
Rx/Tx Optical fibers for other trains interconnections	4	4	3
Tx Optical fibers with full train information	8	3	5

Expandable using more Sub-racks

CONTRACTOR DE LA CONTRACTÓRIA DE LA CONTRACT

Visualization Unit for Hard Panels

One Eurocard Sub-racks 19" Simple Height (3U)

RPS to Control System Interface

1/3 Eurocard Sub-racks 19" Simple Height (3U) (Safety Category B)

CONTRACTOR OF THE OWNER OWNE

Previous experience

Diverse Trip Instrumentation for Atucha II NPP Boron Injection Safety System (2012)

- Similar diverse architecture for 2 analog and 6 digital input signals
- Each train was solved in one sub-rack
- Finally, it was not installed, so it only served as a proof of concept

CONTRACTOR OF TAXABLE PROPERTY.

FAT Platform

Conclusions

CNEA-I&C RPS

- The use of FPGA technology, as the main component of RPS design, has proven to be very effective
- The goal of a simple design was achieved by using FPGAs, finite states machines and one-way communication channels.
- CCF issue is addressed using diverse FPGA implementation running in parallel in each train
- The requirements for independence, isolation and wiring complexity reduction are fulfilled using serial transceivers over optical fiber.

THE REPORT OF THE PARTY OF THE

For Nuclear Instrumentation System

- Count-rate meter and flux-change-rate meter with automatic adjust of counting time for pulse-mode flux [SPL2019, IAEA-TECDOC-1765]
- Random Pulse Generator For Emulation of a Neutron
 Detector System In A Nuclear Reactor [SPL2011]
- Wide Range Neutron Flux Monitoring System using Campbell Mode [SPL2019]
- Wide Range Neutron Detector Emulator and Current
 Mode Neutron Detector Emulator

THE REPORT OF THE PARTY OF THE

Count-rate meter for pulse mode

Count-change-rate meter for pulse mode

- Automatic adjust of counting time
- Stable output (no spurious trip)
- Extended range 0.1 to 10^6 cps
- Digital Output from -3 to 7%/sec

 $\times 10^5$ 10

cbs

Full Paper: "Digital count-rate meter and flux-change-rate meter with automatic adjust of counting time based on FPGA for pulse-mode flux measurements in nuclear reactors" Ríos, Estryk, Verrastro. IEEE SPL2019

(s/%) -3 to 7 %/s Count-rate at 90% of F.V.: 625 cps Delay in decades: 0.8 $\varphi_{(t)} = \varphi_0 \ e^{\theta t}$ * Measured -Actual 100 200 300 400 500 0 0.1 to 10⁶ cps Time (sec) Count-change-rate step from 0 to 50

4 and 6 %/sec, starting from 100cps

and the second sec

Time

Random Pulse Generator For Emulation of a Neutron Detector

and the second second

Random Pulse Generator For Emulation of a Neutron Detector

in ac	ual Pe	rfiles guardados					Conexión - Re	cepción de datos			
Nombre: no_homogeneo_3			Guardar perfil	Puerto:	COM3	•	Actualizar puertos				
Fecha: 10/04/2011					Actualizar perfil	Baud Rate:	921600	*			
Descripción: para SPL2011			mpiar perfil actual	Recording		mon de mire					
• s	eñal ale	atoria	Modelo pr	aralizable	Tiempo muer	io (nseg).	Gener	ar archivo Matlab ar archivo binario	ASCII (m)		
0.5	ena de	Chinten		Modelo no-paralizable			e-lfemu\CNE	EA SYNCIADocur	nentos\CNEAL	spl2011 paper/medicion	Seleccionar
	Order	[c/seg]	Tasa [1/seg]	[seg]	Verificación	i					
•			1 0.1	23	Correctol		into can pues	on conversion on	ventime de l	rd top mon t Man - un	
	-	2	1 0.1	23	Corrector			÷	Cantidad:	0	
-		4	1 0.1	23	Correctol				Méximo:	0	
		5	1 0.1	23	Correctol				Minimo:	0	
		6	1 0.1	23	Correctol	-			Promedio:	0	
	i muyo	(999) (0.00						STD:	0	
	Flujū(I) ((monto))	0.00			Actualizar gráfico		-	Limpian	Ventana	
. 3	divisi ico	mp (0. 2°32)	0			Gráfico logarítmico			1		
f		1	1	1	1		Verteen	-			Limpiar Log
	/	20	40	60	80	100 120					

Exponential sweeps can be configured and commanded from the PC

CONTRACTOR OF CONT

Other FPGA Developments Wide Range Neutron Flux Monitoring System using Campbell Mode

- Based on the Campbell Meansquare theorem
- The variance of the signal is proportional to the neutron flux
- Used with Fission Counters

Wide Range Neutron Flux Monitoring System using Campbell Mode

Full Paper: "FPGA Based Wide Range Neutron Flux Monitoring System using Campbell mode". Alarcón, Marzano, Verrastro, Thorp. IEEE SPL2019

CONTRACTOR OF THE OWNER OWNE

- Variance signal is filtered by a two pole low-pass IIR DEWMA filter.
- DEWMA filter was used to improve response to fast transients with a good filtering because its adaptive nature
- K constant was update each calculation cycle

Wide Range Neutron Detector Emulator and Current Mode Neutron Detector Emulator

- Standalone module, modes and values configurable by the front panel
- Upward sweeps of 3%/sec and 6%/sec (on both outputs)
- Wide Range on a single output
 - Periodic and Random modes (1K/10K/100K/1M cps)
 - Pulse shaping in FPGA with pile up generation
 - Fast DAC
 - Analog output
- Current output range: 500pA / 5nA / 50nA / 500nA

CONTRACTOR OF STREET, STRE

Wide Range Neutron Detector **Emulator** and **Current** Mode Neutron Detector **Emulator**

The state of the s

Replacement Modules for NPPs and RRs

- FPGA-based Alarm Unit for Embalse NPP Area Radiation Monitoring System
- CPLD-based replacement of Simatic Z24 for Atucha I NPP
- CPLD-based Scram Logic replacement for Argentine RRs [IAEA-CN-100]

Nuclear medicine

 AR-PET: Argentine Positron Emission Tomography Scanner [SPL2010]

G

Daniel Sebastián ESTRYK destryk@cae.cnea.gov.ar **I&C Department**

Thank You !

Comisión Nacional de Energía Atómica

