
© 2018 Electric Power Research Institute, Inc. All rights reserved.

Achieving Verifiable and High Integrity Embedded Digital
Devices Through Complexity Awareness and

Constrained Design
12th International Workshop on Application of

Field Programmable Gate Arrays in Nuclear Power Plants

October 14-16, 2019

Dr. Carl Elks, Rick Hite, Jason Moore (Mathworks) Athira Jayakumar, Smitha
Gautham, Chris Deloglos, Andrew Nack (Paragon)and Dr. Ashraf Tantawy

Virginia Commonwealth University
Department of ECE

Richmond, Virginia, USA

Matt Gibson Lead PI,
Electric Power Research Institute, Charlotte, NC.

Sponsored by DOE Office of Nuclear Energy, Advanced Sensors and Instrumentation under
the NEET-2 Program

The SymPLe Project

2 © 2018 Electric Power Research Institute, Inc. All rights reserved.

The Team
 POC information: crelks@VCU.edu, mgibson@epri.com ,

 Matt Gibson, Program PI, EPRI - mgibson@epri.com
 Dr. Carl Elks, Co-PI, Assistant Professor of ECE, Virginia

Commonwealth University – crelks@vcu.edu
 Dr. Ashraf Tantawy, Associate Research Professor, Virginia

Commonwealth University
 Jason Moore, Consulting Services Mathworks
 Andrew Nack, Commercial Grade Dedication, Paragon Inc.
 VCU Students

– Rick Hite, PhD Candidate - Lead Architect
– Smitha Gautham, PhD Candidate - HW V&V and Formal Methods
– Chris Deloglos, PhD Candidate - Architect
– Athira Jayakumar MS Student - Model Based V&V and Testing

 Future collaborators –
– Dr. Patrick Schaumont, Va Tech – HW cyber security
– Dave Landol – OneSpin VLSI formal Verification

mailto:crelks@VCU.edu

3 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Project: Overview
 The talk today is about two things: (1) A rapid overview of the SymPLe

architecture concept, (2) and the formal model based design assurance activities
with respect to IEC 61508.
 Phase 1 sponsored by EPRI and DOE Office of Nuclear Energy, Advanced

Sensors and Instrumentation under the NEET-2 Program from 2015 to 2019.
– The program objectives were to research effective methods to significantly

reduce and mitigate Software Common Cause Faults (CCF) in digital I&C.
 Our approach to addressing SCCF was unusual – we avoided software !
 SymPLe is as much a way of thinking about designing critical systems as it is as

about the SymPle architecture itself.
 The way you design tells a lot about what you design.

4 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Critical Systems Thinking “paraphrased from J. Rushby, Composing Safe Systems”

We build systems from components and platforms, but what
makes something a system is that its architected properties and
behaviors are distinct from those of its components.
– We have become good at this, most of the time.
For critical systems, we need nearly all of the time behavior.

As SW IP, SW languages, HW components become complex
then we may inherit unwanted or undesirable component
interactions, and not know it.
How do we compose complex systems and not inherit undesired

emergent properties and interactions? This is a open and very
active research question.
SymPLe architecture project are steps in this direction.

5 © 2018 Electric Power Research Institute, Inc. All rights reserved.

COMPLEXITY AWARENESS FOR VERIFIABLE SYSTEMS

 It is out of these insights that we cultivated the notions of
“Complexity Awareness”, “Constrained Behavior” and “Roots of
Trust” to support verifiable and cost effective I&C devices and
systems.
Fact: Most nuclear I&C safety functions are not computationally

demanding.
 In the context of nuclear power we often do not need derivatives

of “software intensive” systems and by extension, not carrying
the complexity associated with these devices and systems.
We assert, reducing complexity and enhancing reasoning about

a system provides a tenable foundation for justifying the trust in
the system.

6 © 2018 Electric Power Research Institute, Inc. All rights reserved.

COMPLEXITY AWARE CONCEPT
 A complexity aware design

avoids (or can’t) encroach
into the unknown state
space (the light yellow
space).

 Desirable to stay on valid
and correct state space
paths (green and dark
yellow).

 By limiting complexity (by
design), paths into the
unknown state space are
limited to the point we can
reason about the design and
its implemented behavior.

 This can only occur
through architectural
solutions

Normal Execution - Path exercised
continuously in normal situations

valid, but exception execution -
Path exercised in occasional
but tested situations

Unforeseen and unknown execution,
not tested resulting in erroneous
behavior

Domain of behavior state space diagram

Design flaw or omission flaw

7 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPle Architecture Concept

• SymPLe is a HW solution. It allows programmability and computation at low orthogonality.
• Engineer Accessible: By adopting overlay architecture, we hope to make SymPLe accessible like a CPU based

architecture – but without its complexity - function blocks are the execution functions.
• SymPLe is a architectural viewpoint that seeks to maximize reasoning, transparency and evidence while avoiding

unnecessary complexity

8 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Basic Design Tenants of SymPLe
• Model based formal Design and Verification – Maximize the transparency and evidence about design assurance, development, and

implementation.
• Verifiability - SymPLe is limited in what it can do – it trades computational power for verifiability.
• Composability - The behavior of “composed” element is a composition of the behaviors of its constituent elements, with well-

defined, unambiguous rules of composition.
–Interfaces of elements are unambiguously specified, including behavior.
–Interactions across elements occur only through their specified interfaces
– Assume guarantee reasoning

• Orthogonal - The system is modularized using principles of separation of concerns, considering orthogonality1 of functions and data.
• Think of Lego blocks – can only interact in a few restricted ways.
• Only required interactions are allowed. The architecture precludes unwanted interactions and unwanted, unknown hidden

coupling or dependencies.
• Each element (e.g., a FB unit) is internally well-architected and relatively simple.

• Determinism - The system is architected (satisfying conditions above) to be predictable and synchronous in it’s execution behavior.

1 = a relatively small set of primitive constructs can be combined in a relatively small number of ways to build the control and data structures
of program behavior

These Tenants along with a formal model based design and verification methodology allows CCFs to be
identified before deployment, and enhances the ability to reason about system during qualification.

9 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe: Complexity Awareness Design + FPGA Overlay
Architectures + Model Based Engineering
 Overlay architectures are computational

systems that are designed on top of a
traditional FPGA fabric.
 Overlays are not “fixed” designs or

reverse engineered old designs:
– They employ a computational model
– They represent a user domain
– They encode requirements from the users

domain.
 Overlay architectures allow a domain

community to decide what is “important”
them.
 For the nuclear I&C community – we

know what is important
– Verifiability, Safety, Security and evidence

for trust.

10 © 2018 Electric Power Research Institute, Inc. All rights reserved.

High Level Architecture Model of SymPLe

SymPLe Pre-verified
FB Libraries

H
D

L

C
O

D
ER

Sequence of
FB
executions

Function Blocks
Execute inside
task lanes

11 © 2018 Electric Power Research Institute, Inc. All rights reserved.

WriteRead

For(X = 1:M) Read Input[X]

Trigger Task[1:N]

Parallel Execution

Task[1]

Execute Task[1:N]

Illustration of SymPLe FB Execution

Global
Sequencer

FB[2] FB[Q
]

Scheduler

Task Manager

I[1] I[2] I[M]

Task Manager

O[1] O[2] O[P]

For(X = 1:P) Write Output[X]

Trigger

Local Sequencer[1]

FB[1]

12 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Complete SymPLe System Multiple PLC tasks lanes

Point
I/O cards

Network I/O cards

SymPLe Core

Configured SymPle Toolboxes

Fieldbus,
Modbus,
ProfiBus

13 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Function Blocks

Elementary FBs Built-up FBs

All V 2.0 Function blocks have undergone formal
verification and extensive testing.

Most safety critical I&C applications in NPP are not computationally
challenging. Don’t need complex operations.

Function Block Architecture

• Inspired by IEC 61131-3
and IEC 61499-1

• Deterministic,
synchronous behavior.

• Separation of control and
dataflow with clear and
defined interconnections

• Formal semantics

14 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Fault Tolerance Strategies for SymPLe
 Our approach to enhancing reliability

and supporting safety requirements
was a hierarchical approach to fault
detection and tolerance.

 We enforce low level fault detection to
support a fail-fast/fail-stop state
behavior before the error propagates
beyond boundaries of the system.

 Higher levels of redundancy are driven
by application needs (TMR) and
designer chooses when to use them.

Inherent function block
fault tolerance. Supports
Fail Stop/Fail fast

Supports continued
operation in the
presence of faults

As needed by application

15 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Model Based Design Assurance and Verification for SymPLe
IEC 61508 Process

Athira Jayakumar2, Smitha Gautham1 , Jason Moore3

Virginia Commonwealth University
Department of ECE

Richmond VA
3Mathworks Consulting Group

VCU PhD candidate1, VCU MS candidate2

16 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Model Based Design Verification Workflow

Model Verification
Discover design errors at design time

Code Verification
Gain confidence in the generated code

HD
L

17 © 2018 Electric Power Research Institute, Inc. All rights reserved.

The Major Tool Flows

Synthesis netlist Place &
Route

FPGA

Bit stream

netlist

=
?

=
?

OneSpin just acquired – Future workflow

18 © 2018 Electric Power Research Institute, Inc. All rights reserved.

IEC 61508 Guidance
 61508 Section 3 Annex Table
 There are many of these tables
 These tables provide guidance on

appropriate practices, techniques needed
for compliance.

 The 61508 standard provides no guidance
with respect to “how” or “methodology”.

 Huge gap between standard and (methods
and tools).

 Selecting IEC 61508 qualified tools is
important.

Technique/Measur
e

SIL
1

SIL
2

SIL
3

SIL
4

Applicable Model-Based
Design Tools and Processes

Comments

1. Formal proof - R R HR Simulink – Model Verification
block library

Model Verification blocks can be
used to formalize software safety
requirements and other model
properties.

Simulink Design Verifier –
Property proving, design error
detection

Property proving can be used to
verify model properties. Design
error detection can analyze a
model to detect design errors that
might occur at run time.

Polyspace Code Prover – Code
verification

Polyspace Code Prover can
analyze C code to identify
software errors that might occur
during run time.

2. Animation of
specification and
design

R R R R Simulink

Stateflow

Simulink and Stateflow can be
used to animate design and/or
specification models

3. Static analysis R HR HR R Model Advisor- 61508 Checks

4. Dynamic analysis and
testing

R HR HR HR Simulink Test

5. Forward traceability
between the software
design specification
and the software
verification (including
data verification) plan

R R HR HR Simulink Requirements Simulink Requirements can be
used to link design models to
textual descriptions in Microsoft
Word, Microsoft Excel, ASCII text,
and PDF files

Simulink Test Test Manager feature of Simulink
Test can be used to establish
bidirectional links between test
cases and external documents
with textual requirements.

6. Backward traceability
between the software

verification (including
data verification) plan
and the software
design specification

R R HR HR Simulink Requirements Simulink Requirements can be
used to link design models to
textual descriptions in Microsoft
Word, Microsoft Excel, ASCII text,
and PDF files

Simulink Test Test Manager feature of Simulink
Test can be used to establish
bidirectional links between test
cases and external documents
with textual requirements.

7. Offline numerical
analysis

R HR HR HR MATLAB MATLAB can support offline
numerical analysis

Software module testing and
integration

Table A.5

Programmable electronics integration
testing

Table A.6

Software system testing (validation) Table A.7

19 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Design Assurance V & V Workflow
Evidence and Artifacts Perspective

• The Design Assurance workflow we
developed and adopted was by far the most
challenging part of the project

• IEC 61508 - International functional safety
standard for Electronic/Programmable
Electronic Safety related systems.

• SymPLe – Goal is SIL Level 4

• Need for a Systematic Verification Process
with Evidence Reports

20 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Design Assurance Process Perspective of V&V Workflow
 Most V-Models portray a

linear flow from
requirements to design
(waterfall).

 Note, the V- model aspects
of our workflow are not
linear. We have feedback
loops.

 Requirements/specifications
are refined by gaining more
understanding of the desired
(and undesired) system
behaviors.

 This is the way it works in
real life.

21 © 2018 Electric Power Research Institute, Inc. All rights reserved.

A few examples from V&V process
 Due to time limits, we can’t go through every aspect of the model based V&V workflow today.
 We select a few, and jump to the main findings.
 The intention of the stateflow implementation as seen in figure is to keep the task_error true when

there is a non-recoverable error.

22 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Example1 – State Chart configuration issue
 A wrong state chart setting “Initialize Outputs Every Time Chart Wakes Up” resulted in incorrect output

behavior even though the stateflow implementation is perfectly alright.
 State chart setting caused the output to be initialized to zero each time the state chart woke up which was on

each clock cycle.
 Model Based testing was effective enough to find even the hardest configuration related errors.
 78% design faults were caught at Model Based Testing.

 Note:
The Bug was found well before HDL code generation !!

23 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Structural Coverage
 Structural Model Coverage – How much of the model has been exercised by testcases?

- To determine design errors like dead Logic branches or over-specified design
- To determine if sufficient test vectors have been created
- To determine if existing requirements are sufficient.

 Used Modified Condition/Decision Coverage (MC/DC) coverage criteria.

 An example of an over-specified
design causing less coverage.

 After removing the redundant
condition in the transition,
MC/DC coverage is no more
applicable for the model due to
absence of multiple condition
decision statements or state
transitions.

 Depicts simplicity of design.

24 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Functional Coverage
 Bi-directional traceability links between Testcases and Requirements
 Ensures 100% Requirements coverage

25 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Formal Methods: Simulink Design Verifier – Main
Components
Uses formal verification – Model Checking

• Uncover hard to find
dead logic and design
flaws

Design Error Detection Property
Proving

• Prove design meets
requirements

Test
Generation

• Automate test case generation
for coverage completion or
functional tests

26 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Example of Property for a Higher Level Requirement

Fig: Properties are Hyper- linked to
requirements

Fig: Example of a property at a higher level

• Safety Property for a high level
Requirement: done and busy -> only one of
the signal is high at a given time

• Bidirectional Traceability – IEC 61508
requirement

27 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Example of Property for a Low Level Requirement
 “If the state is FB_SELECT, FETCH or FB_EXECUTE

and an error is detected, the task_error should be high
for 2 clock cycles if error is non-recoverable
(recoverable=0)”

Recoverable error
control flow path

Non-Recoverable
error control flow

path

28 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Counterexample

INIT
FB_SELECT FETCH

FB_EXECUTE ERROR_STATE

Task error changes

 Example of synergism between testing and
formal verification.

 Inconsistent values in task_error
 This condition had also failed during testing

29 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Synergism between testing and formal verification

A key insight on more effective use of formal verification:
Do functional testing first to inform formal methods: more

subtle complex errors
This insight was confirmed or validated by discussions with

the formal methods engineering group at NASA.

30 © 2018 Electric Power Research Institute, Inc. All rights reserved.

End-to-end Traceability
 SymPLe is verified at every incremental level including the Simulink model, generated

HDL code, and hardware implementation
 MBD offers traceability at each of these incremental levels thereby offering a chain of

evidence to support verification.

Bidirectional Traceability between Requirements,
test cases, properties , Model and HDL code

31 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Findings and Results of the Model Based V&V

Faults found in SymPLe architecture by
V&V process

• 24 design faults found during V&V.
• Fig shows the V&V stage where the faults were first identified. The

faults were classified into low, medium and high impact faults based
on severity.

• 78% of the faults were first identified during model based testing

• High severity faults found during formal verification

• Synergy between testing and formal verification
o helped find subtle and hard to detect bugs in corner case

scenarios that could be overlooked during testing.
o Added strong confirmatory evidence that formal methods paired

with testing is effective in detecting difficult SCCFs.

• Traceability between requirements, model, code and proofs provide a
effective verification environment and support IEC 61508 compliance.

• Constrained and complexity aware principles and design
requirements of SymPLe significantly improved the V&V efforts and
time spent on verification.

32 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Phase II of SymPLe
 Phase II will focus on synergistically integrating security and safety into SymPLe.
 We did not address security in Phase I.
 Phase II starting fall and winter of 2019.
 Specifically,

– Constrained architectures (like SymPLe) provide a technical and pragmatic foundation for establishing
very small attack surface devices.

– Developing and implementing primitive security building blocks from PUFs (Physically Unclonable
Functions) for SymPLe will provide a foundation for secure services against sophisticated life cycle
attacks.
 Equipment hijack/tampering
 design/IP theft
 data corruption/theft
 Fingerprinting computations

– Raising the TRL for SymPLe.
 For phase II we have teamed with Dr. Patrick Schaumont of ECE department at VA tech,

Mathworks and with OneSpin solutions (USA).
 Phase II sponsored by Idaho National Labs and EPRI.

33 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Where to find our work
 Report Publications
 ERPI report – free to public

– https://www.epri.com/#/pages/product/000000003002015754/?lang=en-US
 US Department of Energy ASI (soon to be released) or email me..

– Matt Gibson and Carl Elks, Main Achieving Verifiable and High Integrity Instrumentation and Control Systems through
Complexity Awareness and Constrained Design, Final Technical Report, M2CA-15-CA-EPRI-0703-0221, NEET-2
Project No. 15-8044 2019.

 Journal and Conference Publications:
 Near Submission: IEEE Transactions on SW Engineering, Model Based Design and Assurance of

a I&C Architecture for Safety Critical Nuclear Power Applications.
 In preparation: SymPLe: High Integrity Instrumentation and Control Systems through Complexity

Awareness and Constrained Design, IEEE Transactions on Nuclear Science.
 In preparation: Lessons Learned from a Model Based Verification and Validation effort for IEC

61508, Dependable Systems and Networks Conference 2020.
 ANS NPIC – In progress.
 Welcome to visit our Lab at VCU and see SymPLe in action.

34 © 2018 Electric Power Research Institute, Inc. All rights reserved.

?
?

? ?
?

?
? ?

? ?? ?
Discussion

36 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Function Block Error Detection
 Monitors SymPLe execution errors and Logic execution errors
 *FB Controller manages execution recovery for transient errors
 SymPLe Execution Errors

– Function Block Execution Timeout*
– Input Register Read Overflow
– Output Register Write Overflow
– Data Type Error*

 Logic Execution Errors
– Duplex Divergence Error (single-event upset)*
– Arithmetic Overflow
– Arithmetic Underflow
– Arithmetic Divide-By-0

 Logic execution errors are unique to each functionality

Error Type Variable Name Value Binary Value
Duplex Divergence Error stateErrorBit 1 0b1
Function Block Execution
Timeout

timeoutBit 2 0b10

Arithmetic Overflow overflowBit 4 0b100
Arithmetic Underflow underflowBit 8 0b1000
Arithmetic Division by 0 divideByZeroBit 16 0b10000
Input Register Read Overflow inputOverflowBit 32 0b100000
Output Register Write
Overflow

outputOverflowBit 64 0b1000000

Data Type Error typeBit 256 0b100000000

37 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Data Types
 All SymPLe data transmitted as two int32

words
 SymPLe utilizes type-masking for standard

data communication protocol
 Simulink type inheritance allows for easy

type modification and future work

bool
word 1 Data Type (8-bit) n/a (24-bit)
word 2 n/a (31-bit) ←bool (1-bit)

safebool
word 1 Data Type (8-bit) n/a (24-bit)
word 2 Safebool Type (32-bit)

int
word 1 Data Type (8-bit) n/a (24-bit)
word 2 Signed Integer (32-bit)

Qmn
word 1 Data Type (8-bit) Fractional (24-bit)
word 2 Signed Integer (32-bit)

SymPLe Types Description Min Max
Boolean 1-bit logical 0 1
Safebool 32-bit logical 01010101010101010101010101010101 10101010101010101010101010101010
Integer int32 -2147483648 2147483647
Qmn Fixed point (32.24 prec) -2147483648 2147483648

	The SymPLe Project�
	The Team
	SymPLe Project: Overview
	Critical Systems Thinking “paraphrased from J. Rushby, Composing Safe Systems”
	Complexity Awareness for Verifiable Systems�
	COMPLEXITY AWARE CONCEPT
	SymPle Architecture Concept
	Basic Design Tenants of SymPLe
	SymPLe: Complexity Awareness Design + FPGA Overlay Architectures + Model Based Engineering
	High Level Architecture Model of SymPLe
	Illustration of SymPLe FB Execution
	Complete SymPLe System
	SymPLe Function Blocks
	Fault Tolerance Strategies for SymPLe��
	Model Based Design Assurance and Verification for SymPLe�IEC 61508 Process
	Model Based Design Verification Workflow
	The Major Tool Flows
	IEC 61508 Guidance
	�SymPLe Design Assurance V & V Workflow
	Design Assurance Process Perspective of V&V Workflow
	A few examples from V&V process
	Example1 – State Chart configuration issue
	Structural Coverage
	Functional Coverage
	Formal Methods: Simulink Design Verifier – Main Components�Uses formal verification – Model Checking
	Example of Property for a Higher Level Requirement
	Example of Property for a Low Level Requirement
	Counterexample
	Synergism between testing and formal verification
	End-to-end Traceability
	Findings and Results of the Model Based V&V
	Phase II of SymPLe
	Where to find our work
	Discussion
	Function Block Error Detection
	SymPLe Data Types

