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SymPLe Project: Overview
 The talk today is about two things: (1) A rapid overview of the SymPLe

architecture concept, (2) and the formal model based design assurance activities 
with respect to IEC 61508.  
 Phase 1 sponsored by EPRI and DOE Office of Nuclear Energy, Advanced 

Sensors and Instrumentation under the NEET-2 Program from 2015 to 2019. 
– The program objectives were to research effective methods to significantly 

reduce and mitigate Software Common Cause Faults (CCF) in digital I&C. 
 Our approach to addressing SCCF was unusual – we avoided software ! 
 SymPLe is as much a way of thinking about designing critical systems as it is as 

about the SymPle architecture itself.
 The way you design tells a lot about what you design. 
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Critical Systems Thinking “paraphrased from J. Rushby, Composing Safe Systems”

We build systems from components and platforms, but what 
makes something a system is that its architected properties and 
behaviors are distinct from those of its components.
– We have become good at this, most of the time.
For critical systems, we need nearly all of the time behavior. 

As SW IP, SW languages, HW components become complex 
then we may inherit unwanted or undesirable component 
interactions, and not know it. 
How do we compose complex systems and not inherit undesired 

emergent properties and interactions? This is a open and very 
active research question. 
SymPLe architecture project are steps in this direction.  
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COMPLEXITY AWARENESS FOR VERIFIABLE SYSTEMS

 It is out of these insights that we cultivated the notions of 
“Complexity Awareness”, “Constrained Behavior” and “Roots of 
Trust” to support verifiable and cost effective I&C devices and 
systems.
Fact: Most nuclear I&C safety functions are not computationally 

demanding. 
 In the context of nuclear power we often do not need derivatives 

of “software intensive” systems and by extension, not carrying 
the complexity associated with these devices and systems.
We assert, reducing complexity and enhancing reasoning about 

a system provides a tenable foundation for justifying the trust in 
the system.
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COMPLEXITY AWARE CONCEPT
 A complexity aware design 

avoids (or can’t) encroach 
into the unknown state 
space  (the light yellow 
space). 

 Desirable to stay on valid 
and correct state space 
paths (green and dark 
yellow). 

 By limiting complexity (by 
design), paths into the 
unknown state space are 
limited to the point we can 
reason about the design and 
its implemented behavior.  

 This can only occur 
through architectural 
solutions

Normal Execution - Path exercised 
continuously in normal situations

valid, but exception execution -
Path exercised in occasional 
but tested situations

Unforeseen and unknown execution, 
not tested resulting in erroneous 
behavior

Domain of behavior state space diagram

Design flaw or omission flaw
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SymPle Architecture Concept

• SymPLe is a HW solution. It allows programmability and computation at low orthogonality. 
• Engineer Accessible: By adopting overlay architecture, we hope to make SymPLe accessible like a CPU based 

architecture – but without its complexity - function blocks are the execution functions.
• SymPLe is a architectural viewpoint that seeks to maximize reasoning, transparency and evidence while avoiding 

unnecessary complexity
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Basic Design Tenants of SymPLe 
• Model based formal Design and Verification – Maximize the transparency and evidence about design assurance, development, and 

implementation. 
• Verifiability - SymPLe is limited in what it can do – it trades computational power for verifiability.  
• Composability - The behavior of “composed” element is a composition of the behaviors of its constituent elements, with well-

defined, unambiguous rules of composition. 
–Interfaces of elements are unambiguously specified, including behavior.
–Interactions across elements occur only through their specified interfaces
– Assume guarantee reasoning

• Orthogonal - The system is modularized using principles of separation of concerns, considering orthogonality1 of functions and data. 
• Think of Lego blocks – can only interact in a few restricted ways.
• Only required interactions are allowed. The architecture precludes unwanted interactions and unwanted, unknown hidden 

coupling or dependencies.
• Each element (e.g., a FB unit) is internally well-architected and relatively simple.

• Determinism - The system is architected (satisfying conditions above) to be predictable and synchronous  in it’s execution behavior.  

1 = a relatively small set of primitive constructs can be combined in a relatively small number of ways to build the control and data structures 
of program behavior 

These Tenants along with a formal model based design and verification methodology allows CCFs to be 
identified before deployment, and enhances the ability to reason about system during qualification. 
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SymPLe: Complexity Awareness Design + FPGA Overlay 
Architectures + Model Based Engineering
 Overlay architectures are computational 

systems that are designed on top of a 
traditional FPGA fabric. 
 Overlays are not “fixed” designs or 

reverse engineered old designs:
– They employ a computational model
– They represent a user domain 
– They encode requirements from the users 

domain. 
 Overlay architectures allow a domain 

community to decide what is “important” 
them.
 For the nuclear I&C community – we 

know what is important
– Verifiability, Safety, Security and evidence 

for trust.  
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High Level Architecture Model of SymPLe

SymPLe Pre-verified 
FB Libraries 

H
D

L

C
O

D
ER

Sequence of 
FB 
executions

Function Blocks
Execute inside 
task lanes
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WriteRead

For(X = 1:M) Read Input[X]

Trigger Task[1:N]

Parallel Execution

Task[1]

Execute Task[1:N]

Illustration of SymPLe FB Execution

Global 
Sequencer

FB[2] FB[Q
]

Scheduler

Task Manager

I[1] I[2] I[M]

Task Manager

O[1] O[2] O[P]

For(X = 1:P) Write Output[X]

Trigger

Local Sequencer[1]

FB[1]
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Complete SymPLe System Multiple PLC tasks lanes

Point
I/O cards

Network I/O cards

SymPLe Core

Configured SymPle Toolboxes

Fieldbus, 
Modbus, 
ProfiBus
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SymPLe Function Blocks

Elementary FBs Built-up FBs

All V 2.0 Function blocks have undergone formal 
verification and extensive testing. 

Most safety critical I&C applications in NPP are not computationally 
challenging. Don’t need complex operations. 

Function Block Architecture

• Inspired by IEC 61131-3 
and IEC 61499-1

• Deterministic, 
synchronous behavior.  

• Separation of control and 
dataflow with clear and 
defined interconnections

• Formal semantics
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Fault Tolerance Strategies for SymPLe
 Our approach to enhancing reliability 

and supporting safety requirements 
was a hierarchical approach to fault 
detection and tolerance. 

 We enforce low level fault detection to 
support a fail-fast/fail-stop state 
behavior before the error propagates 
beyond boundaries of the system. 

 Higher levels of redundancy are driven 
by application needs (TMR) and 
designer chooses when to use them. 

Inherent function block 
fault tolerance. Supports 
Fail Stop/Fail fast

Supports continued 
operation in the 
presence of faults

As needed by application
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Model Based Design Assurance and Verification for SymPLe
IEC 61508 Process
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Department of ECE
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3Mathworks Consulting Group
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Model Based Design Verification Workflow

Model Verification
Discover design errors at design time

Code Verification
Gain confidence in the generated code

HD
L
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The Major Tool Flows

Synthesis netlist Place &
Route

FPGA

Bit stream

netlist

=
?

=
?

OneSpin just acquired – Future workflow



18 © 2018 Electric Power Research Institute, Inc. All rights reserved.

IEC 61508 Guidance
 61508 Section 3 Annex Table
 There are many of these tables
 These tables provide guidance on 

appropriate practices, techniques needed 
for compliance.

 The 61508 standard provides no guidance 
with respect to “how” or “methodology”.

 Huge gap between standard and (methods 
and tools). 

 Selecting IEC 61508 qualified tools is 
important. 

Technique/Measur
e

SIL 
1

SIL 
2

SIL 
3

SIL 
4

Applicable Model-Based 
Design Tools and Processes

Comments

1. Formal proof - R R HR Simulink – Model Verification 
block library

Model Verification blocks can be 
used to formalize software safety 
requirements and other model 
properties.

Simulink Design Verifier –
Property proving, design error 
detection

Property proving can be used to 
verify model properties. Design 
error detection can analyze a 
model to detect design errors that 
might occur at run time.

Polyspace Code Prover – Code 
verification

Polyspace Code Prover can 
analyze C code to identify 
software errors that might occur 
during run time.

2. Animation of 
specification and 
design

R R R R Simulink 

Stateflow

Simulink and Stateflow can be 
used to animate design and/or 
specification models

3. Static analysis R HR HR R Model Advisor- 61508 Checks

4. Dynamic analysis and 
testing

R HR HR HR Simulink Test

5. Forward traceability 
between the software 
design specification 
and the software 
verification (including 
data verification) plan

R R HR HR Simulink Requirements Simulink Requirements can be 
used to link design models to 
textual descriptions in Microsoft 
Word, Microsoft Excel, ASCII text, 
and PDF files

Simulink Test Test Manager feature of Simulink 
Test can be used to establish 
bidirectional links between test 
cases and external documents 
with textual requirements.

6. Backward traceability 
between the software

verification (including 
data verification) plan 
and the software 
design specification

R R HR HR Simulink Requirements Simulink Requirements can be 
used to link design models to 
textual descriptions in Microsoft 
Word, Microsoft Excel, ASCII text, 
and PDF files

Simulink Test Test Manager feature of Simulink 
Test can be used to establish 
bidirectional links between test 
cases and external documents 
with textual requirements.

7. Offline numerical 
analysis

R HR HR HR MATLAB MATLAB can support offline 
numerical analysis

Software module testing and 
integration

Table A.5

Programmable electronics integration 
testing

Table A.6

Software system testing (validation) Table A.7
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SymPLe Design Assurance V & V Workflow
Evidence and Artifacts Perspective

• The Design Assurance workflow we 
developed and adopted was by far the most 
challenging part of the project

• IEC 61508 - International functional safety 
standard for Electronic/Programmable 
Electronic Safety related systems.

• SymPLe – Goal is SIL Level 4

• Need for a Systematic Verification Process 
with Evidence Reports
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Design Assurance Process Perspective of V&V Workflow 
 Most V-Models portray a 

linear flow from 
requirements to design 
(waterfall). 

 Note, the V- model aspects 
of our workflow are not 
linear. We have feedback 
loops. 

 Requirements/specifications  
are refined by gaining more 
understanding of the desired 
(and undesired) system 
behaviors.  

 This is the way it works in 
real life. 
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A few examples from V&V process
 Due to time limits, we can’t go through every aspect of the model based V&V workflow today.
 We select a few, and jump to the main findings. 
 The intention of the stateflow implementation as seen in figure is to keep the task_error true when 

there is a non-recoverable error.
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Example1 – State Chart configuration issue
 A wrong state chart setting “Initialize Outputs Every Time Chart Wakes Up” resulted in incorrect output 

behavior even though the stateflow implementation is perfectly alright. 
 State chart setting caused the output to be initialized to zero each time the state chart woke up which was on 

each clock cycle.
 Model Based testing was effective enough to find even the hardest configuration related errors. 
 78% design faults were caught at Model Based Testing.

 Note:
The Bug was found well before HDL code generation !!
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Structural Coverage
 Structural Model Coverage – How much of the model has been exercised by testcases? 

- To determine design errors like dead Logic branches or over-specified design
- To determine if sufficient test vectors have been created
- To determine if existing requirements are sufficient.

 Used Modified Condition/Decision Coverage (MC/DC) coverage criteria.

 An example of an over-specified 
design causing less coverage.

 After removing the redundant 
condition in the transition, 
MC/DC coverage is no more 
applicable for the model due to 
absence of multiple condition 
decision statements or state 
transitions.

 Depicts simplicity of design.
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Functional Coverage
 Bi-directional traceability links between Testcases and Requirements
 Ensures 100% Requirements coverage
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Formal Methods: Simulink Design Verifier – Main 
Components
Uses formal verification – Model Checking 

• Uncover hard to find 
dead logic and design 
flaws

Design Error Detection Property
Proving

• Prove design meets 
requirements

Test 
Generation

• Automate test case generation 
for coverage completion or 
functional tests
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Example of Property for a Higher Level Requirement 

Fig: Properties are Hyper- linked to 
requirements

Fig: Example of a property at a higher level

• Safety Property for a high level 
Requirement: done and busy -> only one of 
the signal is high at a given time 

• Bidirectional Traceability – IEC 61508 
requirement
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Example of Property for a Low Level Requirement 
 “If the state is FB_SELECT, FETCH or FB_EXECUTE 

and an error is detected, the task_error should be high 
for 2 clock cycles if error is non-recoverable 
(recoverable=0)”

Recoverable error 
control flow path

Non-Recoverable 
error control flow 

path
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Counterexample 

INIT
FB_SELECT FETCH

FB_EXECUTE ERROR_STATE

Task error changes 

 Example of synergism between testing and 
formal verification. 

 Inconsistent values in task_error
 This condition had also failed during testing
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Synergism between testing and formal verification

A key insight on more effective use of formal verification:
Do functional testing first to inform formal methods: more 

subtle complex errors
This insight was confirmed or validated by discussions with 

the formal methods engineering group at NASA. 
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End-to-end Traceability
 SymPLe is verified at every incremental level including the Simulink model, generated 

HDL code, and hardware implementation
 MBD offers traceability at each of these incremental levels thereby offering a chain of 

evidence to support verification.

Bidirectional Traceability between Requirements, 
test cases, properties , Model and HDL code
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Findings and Results of the Model Based V&V 

Faults found in SymPLe architecture by 
V&V process

• 24 design faults found during V&V. 
• Fig shows the V&V stage where the faults were first identified. The 

faults were classified into low, medium and high impact faults based 
on severity.

• 78% of the faults were first identified during model based testing

• High severity faults found during formal verification

• Synergy between testing and formal verification 
o helped find subtle and hard to detect bugs in corner case 

scenarios that could be overlooked during testing. 
o Added strong confirmatory evidence that formal methods paired 

with testing is effective in detecting difficult SCCFs.

• Traceability between requirements, model, code and proofs provide a 
effective verification environment and support IEC 61508 compliance.

• Constrained and complexity aware principles and design 
requirements of SymPLe significantly improved the V&V efforts and 
time spent on verification. 
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Phase II of SymPLe
 Phase II will focus on synergistically integrating security and safety into SymPLe. 
 We did not address security in Phase I. 
 Phase II starting fall and winter of 2019. 
 Specifically, 

– Constrained architectures ( like SymPLe) provide a technical and pragmatic foundation for establishing 
very small attack surface devices.  

– Developing and implementing primitive security building blocks from PUFs (Physically Unclonable
Functions) for SymPLe will provide a foundation for secure services against sophisticated life cycle 
attacks.
 Equipment hijack/tampering
 design/IP theft
 data corruption/theft
 Fingerprinting computations

– Raising the TRL for SymPLe. 
 For phase II we have teamed with Dr. Patrick Schaumont of ECE department at VA tech, 

Mathworks and with OneSpin solutions (USA).  
 Phase II sponsored by Idaho National Labs and EPRI. 



33 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Where to find our work
 Report Publications
 ERPI report – free to public

– https://www.epri.com/#/pages/product/000000003002015754/?lang=en-US
 US Department of Energy ASI (soon to be released)  or email me..

– Matt Gibson and Carl Elks, Main Achieving Verifiable and High Integrity Instrumentation and Control Systems through 
Complexity Awareness and Constrained Design, Final Technical Report, M2CA-15-CA-EPRI-0703-0221, NEET-2 
Project No. 15-8044 2019. 

 Journal and Conference Publications:
 Near Submission: IEEE Transactions on SW Engineering, Model Based Design and Assurance of 

a I&C Architecture for Safety Critical Nuclear Power Applications. 
 In preparation: SymPLe: High Integrity Instrumentation and Control Systems through Complexity 

Awareness and Constrained Design, IEEE Transactions on Nuclear Science. 
 In preparation: Lessons Learned from a Model Based Verification and Validation effort for IEC 

61508, Dependable Systems and Networks Conference 2020. 
 ANS NPIC – In progress.  
 Welcome to visit our Lab at VCU and see SymPLe in action. 
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?
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Discussion
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Function Block Error Detection
 Monitors SymPLe execution errors and Logic execution errors
 *FB Controller manages execution recovery for transient errors
 SymPLe Execution Errors

– Function Block Execution Timeout*
– Input Register Read Overflow
– Output Register Write Overflow
– Data Type Error*

 Logic Execution Errors
– Duplex Divergence Error (single-event upset)*
– Arithmetic Overflow
– Arithmetic Underflow
– Arithmetic Divide-By-0

 Logic execution errors are unique to each functionality

Error Type Variable Name Value Binary Value
Duplex Divergence Error stateErrorBit 1 0b1
Function Block Execution 
Timeout

timeoutBit 2 0b10

Arithmetic Overflow overflowBit 4 0b100
Arithmetic Underflow underflowBit 8 0b1000
Arithmetic Division by 0 divideByZeroBit 16 0b10000
Input Register Read Overflow inputOverflowBit 32 0b100000
Output Register Write 
Overflow

outputOverflowBit 64 0b1000000

Data Type Error typeBit 256 0b100000000
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SymPLe Data Types
 All SymPLe data transmitted as two int32 

words
 SymPLe utilizes type-masking for standard 

data communication protocol
 Simulink type inheritance allows for easy 

type modification and future work

bool
word 1 Data Type (8-bit) n/a (24-bit)
word 2 n/a (31-bit) ←bool (1-bit)

safebool
word 1 Data Type (8-bit) n/a (24-bit)
word 2 Safebool Type (32-bit)

int
word 1 Data Type (8-bit) n/a (24-bit)
word 2 Signed Integer (32-bit)

Qmn
word 1 Data Type (8-bit) Fractional (24-bit)
word 2 Signed Integer (32-bit)

SymPLe Types Description Min Max
Boolean 1-bit logical 0 1
Safebool 32-bit logical 01010101010101010101010101010101 10101010101010101010101010101010
Integer int32 -2147483648 2147483647
Qmn Fixed point (32.24 prec) -2147483648 2147483648
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