11th International Workshop on the Application of FPGAs in Nuclear Power Plants

Using NUREG/CR-7007 to Assess the Internal Diversity of an FPGA - Based Platform

Sean Kelley Chief Operating Officer

October 8-11, 2018 Dallas, Texas, USA

The Age Old Question

....or at least 25+ years old

- Current NRC activities related to action plan for Common Cause Failures (CCFs) stem from SECY-93-087 – "Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light-Water Reactor Designs"
- If diversity is required in a safety system to mitigate the consequences of potential CCFs.....

How much diversity is enough?

Three Baseline Diversity Strategies

- Strategy A Different Technologies
 - Ex: Analog vs. Digital
- Strategy B Different Approaches within Same Technology
 - Ex: FPGA vs. Microprocessor
- Strategy C Different Technology Architectures within Same Technology
 - Ex: Diverse microprocessors as the basis for primary safety systems and diverse backup system (DAS)
 - Ex: FPGA vs. CPLD

Decide which strategy is closest

Diversity Attributes

- Design Strategy A, B, or C
- Equipment Manufacturer manufacturer and equipment Type
- Logic Processing Equipment architecture, versions, dataflow, and/or component integration
- Functional underlying mechanisms, different purpose, function, control logic, actuation means, time response
- Life-cycle organizations/companies, management, teams
- Logic algorithms, timing, run-time environment
- Signal sensed parameters, physical effects, sensor types

Inherent vs. Intentional

Implementation

- 1. Classify the diversity strategy Identification of specific diversity strategy selected
- 2. Confirm inherent diversity credit Impact of technology difference
- 3. Identify intentional diversity usage Diversity criteria intentionally applied. Conscious decisions, must be adhered to by effort
- 4. Categorize diversity usage in relation to the corresponding strategy classification Capturing combination of diversity vs. corresponding strategy identified in NUREG/CR-7007 (A, B, C)
- 5. Assess the diversity strategy Comparative evaluations against the baseline diversity strategies

Use spreadsheet in NUREG/CR-7007

Determine Adequacy of Diversity Strategy

- Proposed diversity strategy can be shown to adequately addresses CCF mitigation needs, as identified via a D3 assessment, based upon:
 - 1. Conformance to one of three baseline strategies (or an accepted variant), or
 - 2. Determination strategy reasonably ensures CCF mitigation comparable to baseline strategy (i.e., acceptable rationale provided to support mitigation claims)

Similar scores to baseline should be acceptable

Case Study of a Sample FPGA System

- Hypothetical PLD based protection platform
 - Segregated self-diagnostics and finite state machine for execution of application
 - Uses multiple types of PLD devices throughout system
 - Use of multiple and separate timing domains
 - Multiple vectors for accomplishing safety functions (i.e., functional diversity for accomplishing safety functions)
- Separate and independent Design and IV&V personnel
 - Including separation of management teams
- Nuclear processes and design elements a focus at conception

Achieves Diversity by combining Technology, Design Elements, and Processes

Design Attributes

 Use of 2 types of PLDs (i.e., Different architectures within same technology family, Strategy C)

				Platform			
				E	Examp	le	
		RANK	DCE WT	INT	INH	SCORE	
	Different technologies (A)	1	0.500			0.000	
ESIGN	Different approaches within a technology (B)	2	0.333			0.000	
Ξ	Different architectures (C)	3	0.167	x		0.167	
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		1.000		0.167	0.167	

Determines Baseline Strategy

Equipment Manufacturer

- Same manufacturer for the different PLDs
 - Conservative credit given to design by treating different chip families as different versions of the same product rather than different products

ATTRIBUTE CRITERIA				F	n	
				E	Exampl	е
		RANK	DCE WT	INT	INH	SCORE
ц.	Different manufacturers of fundamentally different equipment designs	1	0.400			0.000
MANI	Same manufacturer of fundamentally different equipment designs	2	0.300			0.000
MENT	Different manufacturers of same equipment design	3	0.200			0.000
EQUIN	Same manufacturer of different versions of the same equipment design	4	0.100	Х		0.100
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.250		0.025	0.100

Be conservative and be able to defend your position

Logic Processing Equipment

- Intentional selection of different logic processing approaches in the different PLD devices
- Inherent differences in data flow microarchitectures and structural characteristics

				Platform		
				E	Examp	le
		RANK	DCE WT	INT	INH	SCORE
<u>ei</u>	Different logic processing equipment architectures	1	0.400			0.000
C. EQU	Different logic processing versions in same equipment architecture	2	0.300	X		0.300
C PRO	Different component integration architectures	3	0.200			0.000
LOGI	Different data flow architectures	4	0.100		i	0.100
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.644		0.258	0.400

Again..... a conservative approach by assuming different versions of the architecture

Function

- Inherent response time scale due to different clock domains
- Intentional use of different underlying mechanisms and actuation means
 - Existing plant system designs (Anticipated Transient w/o SCRAM (ATWS) operating experience and 10 CFR 50.62)
 - Internal diverse actuation mechanisms (logics and actuation paths)

ATTRIBUTE CRITERIA				Platform			
				E	Examp	le	
		RANK	DCE WT	INT	INH	SCORE	
	Different underlying mechanisms to accomplish safety function	1	0.500	х		0.500	
NCTION	Different purpose, function, control logic, or actuation means of same underlying mechanism	2	0.333	х		0.333	
FUI	Different response time scale	3	0.167		i	0.167	
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.600		0.600	1.000	

Since some system design rules must be maintained you can take credit for them

Lifecycle

- Intentional use of different management teams and use of nuclear processes leads to
- Inherent diversity of personnel (Design vs. IV&V)

				Platform		
				E	Examp	e
		RANK	DCE WT	INT	INH	SCORE
	Different design organizations/companies	1	0.400			0.000
CLE	Different management teams within the same company	2	0.300	x		0.300
LIFECY	Different designers, engineers, and/or programmers	3	0.200		i	0.200
	Different testers, installers, or certification personnel	4	0.100		i	0.100
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.683		0.410	0.600

Regulatory compliance dictates certain decisions

Signal

- Intentional use of different parameters sensed by different physical effects based on the existing signal diversity in the protection systems (Pressures, Levels, Temperatures, NI, etc)
 - Current practice when designing Nuclear I&C Systems

				F	Platform	
				E	Examp	le
		RANK	DCE WT	INT	INH	SCORE
	Different reactor or process parameters sensed by different physical effects	1	0.500	х		0.500
GNAL	Different reactor or process parameters sensed by the same physical effect	2	0.333			0.000
N	The same process parameter sensed by a different redundant set of similar sensors	3	0.167			0.000
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.867		0.434	0.500

Old Adage - Stick with what works

Logic

- Intentional use of different and separate logics for safety functions/self tests
- Inherent differences in timing, runtime, and functional representations provided by use of different PLDs and separate clock domains

ATTRIBUTE CRITERIA				Platform			
				E	Examp	le	
		RANK	DCE WT	INT	INH	SCORE	
	Different algorithms, logic, and logic architecture	1	0.400	x		0.400	
<u>u</u>	Different timing or order of execution	2	0.300		i	0.300	
LOG	Different runtime environments	3	0.200		i	0.200	
	Different functional representations	4	0.100		i	0.100	
	Diversity Attribute Effectiveness WT. AND SUBTOTAL		0.733		0.733	1.000	

FPGAs have strong diversity capabilities in this area!

Evaluating Diversity

- Normalize your <u>System Score</u> with Subtotals and Weighting
 - Example:
 - Logic Section Subtotal:

Score of 1.0 * Weighting of 0.733 *100 = 73.3

- Add up all section normalized scores to calculate your <u>Normalized</u> <u>System Score</u>
- Compare <u>Normalized System Score</u> to the <u>Baseline Score</u> of 271 to compute a comparison ratio

Having a spreadsheet implementing the NUREG worksheet helps with this task.

Sun port

Strategy Mapping

- Strategy C represents architectural variations within a technology as the basis for diverse systems, redundancies, or subsystems
- Represents composite of acceptable Diversity solutions
- Most comparable to the case study system
- Strategy C yields a comparison ratio of <u>0.98</u>

Table 6.4. Overview of baseline diversity strategies

Dia tanàna dia kaominina di	Strategy		
Diversity attribute	A	В	C
Design	1.000	1	11.5.55
Different technologies	x		-
Different approach—same technology		x	-
Different architectures	ì	í	x
Equipment Manufacturer		-	1
Different manufacturer-different design	x	x	-
Same manufacturer—different design	-	-	-
Different manufacturer—same design		-	8
Same manufacturer-different version	-		-
Logic Processing Equipment	1.50.1		11000
Different logic processing architecture	i	i	x
Different logic processing versions in same	-	-	
architecture			
Different component integration architecture	í	x	x
Different data-flow architecture	i		100
Functional	-	1	11
Different underlying mechanisms	i	i	-
Different purpose, function, control, logic, or	x	2	x
actuation means	a Carro	11 12	10.00
Different response time scale	-		
Life-cycle		1	1
Different design organizations/companies	x	x	x
Different management teams within same company	-	1	
Different design/development teams (designers,	i	i	i
engineers, programmers)		1	11.000
Different implementation/validation teams (testers.	i	i	i
installers, or certification personnel)			11.00
Logic			-
Different algorithms, logic, and program architecture	i	x	*
Different timing or order of execution	i	i	
Different runtime environment	i	i i	x
Different functional representation	i	- i	x
Signal		1	T.
Different parameters sensed by different physical	x	x	x
effects		1 A T-	
Different parameters sensed by same physical effects	x	x	x
Same parameter sensed by a different redundant set	x	x	x
of similar sensors		1.00	11.1.5

"Intentional diversity (x), inherent diversity (i), not applicable (-).

Digital Systems combined with DAS deemed acceptable

FPGA System Comparison /w Strategy C

- Normalized System Score 263
 - (0.167 + 0.025 + 0.258 + 0.600 + 0.410 + 0.434 + 0.733) * 100 = 262.56
- Compare <u>Normalized System Score</u> to the <u>Baseline Score</u> of 271 yields a comparison ratio of <u>0.97</u>
- Results for the FPGA System with internal diversity compares favorably (0.97 vs. 0.98) to a nominal microprocessor based primary safety system with a microprocessor based diverse backup system (DAS) (principle example for Strategy C) as described in NUREG/CR-7007

Case Study FPGA System with internal diversity does not need a DAS

www.sunport.ch

Thank you

Contact Information

Sean Kelley

Chief Operating Officer 678.654.9354 s kellev@support.ch

SunPort SA

LaCite Business Nucleus Avenue De l'Universite 24 CH-1005 Lausanne, Switzerland