

HFC-FPGA System Equipment Qualification and Lessons Learned

October 10th, 2018

Table of Contents

- Test Specimen
 - Configuration
 - Modules
 - Redundancy
- Test Sequence
 - Burn-in
 - Baseline testing
 - Heat and Humidity
 - EMI/RFI
 - Seismic
 - Post-stress Operability and Prudency
- Lessons Learned
 - Burn-In
 - Baseline testing
 - Heat and Humidity
 - EMI/RFI
 - Seismic
 - Post-stress Operability and Prudency

Test Specimen: Configuration

- Two remotes in a seismic rack
 - Remote 1: FCPU
 - Remote 2: FCPUX
 - All associated Termination Boards
 - All associated CON cards on backplane
- Incoming 120 VAC power
 - To 24 VDC redundant Power Supplies
 - Line Filters and Surge Suppressors
- Outgoing signal lines to HPAT
 - HFC Programmable Automated Tester
 - Unshielded during normal operation
 - Fiber optic communication to HPAT
- All FPGA used are Microsemi
 - ProASIC3
 - IGLOO
 - IGLOO2

Test Specimen: Configuration

- FPC08 Gateways
 - Communicate between FPGA Controllers and C-Link
 - Modified version of previous HFC-FPC08 controller
- HSIMTX/HSIMRX
 - Fiber optic F-Link communication modules
 - Allows for communication of I/O points between racks
- HPAT
 - Custom application to support testing
 - Field wiring to Test Specimen I/O points
 - Analog and Digital Inputs and Outputs
 - Communicates with Engineering Workstation PC via Ethernet

Test Specimen: Modules

Designation	Function
HFC-FCPU	Master Controller with 4 DI/4 DO
HFC-FCPUX	Master Controller
HFC-FPUA	16-Point Analog Input
HFC-FPUM	8-Point 3-Wire RTD Input Card, 100-ohm Platinum
HFC-FPUM2	8-Point 3-Wire RTD Input Card, 100-ohm Platinum (High accuracy)
HFC-FPUL	8-Point E-Type Thermocouple Input Card 0-500 °C
HFC-FPUAO	8-Point Analog Output Card (4-20 mA)
HFC-FPUD01	16-Point Form C Relay Outputs + 16-Point Discrete Inputs
HFC-FPUD02	32-Point Discrete Input Card (24, 48 VDC input)
HFC-FPC08	Communication Gateway Controller
HFC-HSIM	High Speed Interface Module

Test Specimen: Redundancy

- Remote level
 - Two remotes with nearly identical test applications
 - In the event of remote crash, module data available from other remote
- Master Controller
 - Each remote has two redundant FCPU/FCPUX
 - In the event of primary controller failure, failover occurs and the remote continues to function
- Communication Gateway
 - Each remote has two redundant FPC08 Gateways
 - Allows for continued communication with EWS PC in the event of a single failure
- Onboard FPGA
 - HFC-FPGA modules have a Control and Diagnostic FPGA on-board
 - Diagnostic running in parallel to detect failures
 - No on-board failover
- 24 VDC Power Supplies

Test Sequence: Overview

- Performed as part of Test Phase
 - All components of EQ test system must be version controlled
 - All implementation phase tasks must be completed on Test Specimen Hardware and FPGA loads
 - Traceability to previous phases to ensure correct testing is done at the correct levels
- Software tools
 - Historical Archiving System (HAS) for point transitions and analog data
 - Sequence of Events (SOE) Logger for ms-resolution DI/DO transitions
 - HFC OneStep for translation of application from PromisE to FPGA load
 - All SW tools are released and version controlled
- FPGA loads
 - Timing analysis completed
 - All other tests that may result in code changes completed

Test Sequence: Overview

- Performed per EPRI TR 107330
- In-house, non-destructive test
 - No special equipment required
 - Ambient atmospheric conditions
- All PCBs must be powered on and in a normal operating state for 352 hours
 - In communication with controllers
 - Running TSAP
 - Run time is cumulative and the test may be started or stopped without failure
 - The failure of a single board does not constitute the failure of an entire rack or assembly
- · PBCs that pass the Burn-in Test may be used for production or EQ testing
 - Used to detect early-life failures in PCBs
 - Failing boards will undergo Root Cause Failure Analysis

Test Details: Burn-in Test (Continued)

Powered on TSAP running All cards present

- Performance tests to determine Test Specimen performance during and following EQ tests
 - Baseline results determined during pre-qualification tests
 - Results from EQ testing compared to baseline to evaluate impact of EQ test on Test Specimen
- Accuracy for Discrete and Analog I/O
 - Manual Accuracy measurements on each module
 - Automated accuracy testing and measurement during Qualification

- Response time for Discrete and Analog I/O
 - Response time measured using an oscilloscope for analog and digital channels
 - Automated response time testing performed during qualification testing

Figure 3. LDS2 TSAP Algorithm for Digital Response Test

- Discrete Input Operability
 - State transitions measured at intended voltage
 - State transition low voltage measured
 - State transition high voltage measured
 - Not performed during qualification testing due to need for Test Specimen access
- Discrete Output Operability
 - State transition measured at intended current draw
 - State transition measured at lowest designed current
 - State transition measured at highest designed current
 - Not performed during qualification testing due to need for Test Specimen access
- Communication Operability
 - All communication links monitored for complete and correct data transfer
 - Comparison of sent and received packets
 - Periodic data transmission
 - Performed during qualification testing

- Coprocessor Operability
 - Not performed in HFC systems as it is not applicable
 - Measurement of loop times for coprocessors
 - Operability functions of coprocessors tested
- Timer Tests
 - Timers are set to toggle I/O points and analog values in a periodic pattern
 - State transitions for these I/O points are monitored and the period of transition is analyzed
 - Conducted during qualification testing

Figure 6. TSAP Timer Test Algorithm

- Failure to Complete Scan detection
 - Self-diagnostics or other internal system monitoring uses periodic scans of data by the PLC
 - Induces a communication fault or break to cause a scan failure
 - Measure the response time of the system between inducing and detecting failure
 - Not conducted during qualification testing due to required access to the Test Specimen
- Failover Operability
 - Redundant components of the system are removed or powered off to induce failover
 - Controllers, communication gateways, power supplies
 - Other automated tests such as accuracy and timer tests are run to evaluate Test Specimen response
 - Not conducted during qualification testing due to required access to the Test Specimen
- Loss of Power
 - Incoming power to the Test Specimen removed for at least 30 seconds
 - Power restored to Test Specimen
 - Other automated tests such as accuracy and timer tests are run to evaluate Test Specimen response
 - Not conducted during qualification testing due to required access to the Test Specimen

- Power Interruption
 - 40 ms loss of power induced on incoming unit power
 - UPS can be used to mitigate the impact, if included in general qualification of the PLC
 - Other automated tests such as accuracy and timer tests are run to evaluate Test Specimen response
 - Not conducted during qualification testing due to required access to the Test Specimen
- Operability testing performed before, during and after qualification tests
 - All tests done before and after qualification
 - Automated Accuracy, Response Time, and Timer tests performed during qualification testing
 - Acceptance criteria defined in EPRI TR 107330

Baseline Test: Prudency

- Performance test to determine the response of the test specimen to the EQ tests
 - Baseline test performed during pre-qualification phase
 - Results during and after EQ testing compared to baseline to identify performance changes
- Burst of Events
 - DI/DO channels toggling at a 1 Hz frequency
 - AI/AO channels toggling between 10% and 90% at a 1 Hz frequency
 - Serial I/O scanning is an automatic function of the controller and requires no test configuration.
 - Conducted during qualification testing

Figure 1 – Algorithm for Analog BOE Test

- Serial Port Failure
 - Redundant serial ports internal to the Test Specimen and performing external communication are disconnected
 - Automated tests are run during these port failures to assess Test Specimen response
 - Conducted using a breakout cable
 - Not conducted during qualification testing due to required access to the Test Specimen
- Noise Test
 - Superimposes a 100 kHz white noise signal at 2.5 vrms
 - Imposed on the transmit and receive signal lines of each serial port
 - Not conducted during qualification testing due to required access to the Test Specimen
- Fault Simulation Test
 - Simulates failure of primary controller in a remote to trigger failover to secondary controller.
 - Not conducted during qualification testing due to required access to the Test Specimen

Figure 2 - Noise Signal Waveform

- Per EPRI TR 107330 4.3.6
- · Laboratory test, potentially destructive test
 - Temperature and humidity controlled chamber
 - Calibrated thermocouples
- Test Specimen is running and in normal operating configuration
 - Located in climate-controlled test chamber
 - Connected via communication cable (Cat5) to external monitoring PC
- Operability and prudency checks run at specified times during the test
 - End of elevated temperature, end of low temperature, and end of test
- Test duration is specified by minimum durations
 - Allows for flexibility to accommodate lab personnel
 - Long transition times prevent condensation

Test Details: Environmental Stress Test (Continued)

Test Details: Environmental Stress Test (Continued)

- Automated tests
 - Timer Test
 - Automated Accuracy Test
 - Automated Response Time test
 - Burst of Events Test
- Operability checks at specified points
 - Loss of Power Test
 - Failover Test
 - Automated Tests
- Margins
 - EPRI TR-107330 requires margins on test envelope to ensure test meets or exceeds envelope
 - $\pm 5^{\circ}$ F and 5% Relative Humidity

Test Details: Electrostatic Discharge Test

- Per IEC 61000-4-2
- Laboratory test, potentially destructive testing
 - ESD pulse generator
 - Ground plane
- Test Specimen is running in normal configuration
 - Test points are all areas that may be accessed by operators
 - Areas inside cabinets are tested despite normal operation being 'doors closed'
 - Automated Operability Tests and Burst of Events Test is running while pulses are applied
- Pulses are applied for contact and air discharges
 - Contact discharges are 8 kV, and applied to conductive surfaces (Card bezels, handles, frames, etc)
 - Air discharges are 15 kV, and applied to nonconductive surfaces (Switches, flat screen monitors, cords, ETC)
 - All test points are exposed to 10 discharges at both polarities
- Acceptable responses are either normal performance or temporary degradation
 - Normal performance means there was no degradation or deviation caused by the pulses
 - Temporary degradation means that any deviation from normal performance was corrected without operator intervention

Test Details: Electrostatic Discharge Test (Continued)

HFC-FPGA Rack Front Test Points

Test Details: Seismic Test

- Per EPRI TR 107330 Section 4.3.9
- Laboratory test, destructive
 - Requires large hydraulic shake table
 - Causes deformation of cabinet frames
- Category I or II Test Specimen requirements
 - Category I is for safety systems
 - Requires both structural integrity and full unit function through the whole test
 - Category II is for non-safety systems
 - Only requires structural integrity
- · Seismic spectrum varies with job site and mounting method
 - EPRI TR 107330 requirement for Class 1E safety systems
 - Bolting vs welding has different damping % requirements
 - Site-specific non-class 1E spectra based on elevation and site data
- Required 10% Margin by IEEE 344

Class 1E Seismic Spectrum per EPRI TR-107330

Test Details: Seismic Test (Continued)

- HFC-FPGA Test Specimen mounting
 - Bolted to Test Fixture
 - Test Fixture bolted to triaxial seismic table
 - Accelerometers mounted to representative locations
- Test sequence executed
 - Resonance search
 - 5 OBE
 - 1 SSE
 - Resonance search
- All automated tests running during test sequence
 - Automated Operability Tests
 - Burst of Events Test

- Per NRC RG 1.180, MIL-STD-461E
 - These standards have been updated and approved by the USNRC since the latest endorsed revision of EPRI TR 107330
- Laboratory test, potentially destructive testing
 - Anechoic chambers, emitting and receiving antennae
 - Susceptibility tests may damage electronics
- Two categories of tests with multiple ways to fulfill the requirements: MIL-STD or IEC
 - Emissions
 - CE101, CE102, RE101, RE102 from MIL-STD-461E
 - CISPR 11 from IEC 61000-6-4
 - Susceptibility
 - CS101, CS114, CS115, CS116, RS101, RS103 from MIL-STD-461E
 - IEC 61000-4-(3, 4, 5, 6, 8, 9, 10, 12, 13, 16)
- HFC uses MIL-STD testing as a default
 - May be interchanged with the equivalent IEC test(s) when needed per NRC RG 1.180

Test Details: EMI/RFI Test (CE101)

- Low-frequency conducted emissions
 - 30 Hz to 10 kHz
 - Test performed on line and neutral side
 - Limit set by NRC RG 1.180
- Power is run from a lab-provided source through lab equipment, then to the Test Specimen
 - Capacitors are installed on the incoming power lines to reduce ambient noise
 - Any ferrites or line filters used must be installed in the final production unit
- Potential causes of failure include power supplies and improper grounding
- dB requirements may be relaxed as a function of current
 - dB relaxation = 20 log (fundamental current)
 - With a fundamental current of 3.5A, relaxation was applied

CE101 Conducted Emissions 30Hz - 10 kHz, Line

Line Test Setup for CE101

Test Details: EMI/RFI Test (CE102)

- High-frequency conducted emissions
 - 10 kHz to 2 MHz
 - Test performed on line and neutral side
 - Limit set by NRC RG 1.180
- Power is run from a lab-provided source through lab equipment, then to the Test Specimen
 - Capacitors are installed on the incoming power lines to reduce ambient noise
 - Any ferrites or line filters used must be installed in the final production unit
- Potential causes of failure include power supplies and improper grounding
- Different emissions limits based on AC Voltage
 - Higher voltage allows for higher limit
 - Partitioned for 28V, 115V, 220V, and 440V
 - 115 VAC used for HFC-FPGA

HF Controls

CE102 Conducted Emissions 10 kHz - 10MHz, 230VAC/50Hz Line with Line Filter

Line Test Setup for CE102

Test Details: EMI/RFI Test (RE101)

- Radiated emissions, magnetic field
 - 30 Hz to 100 kHz
 - Test performed in a grid around the Test Specimen
 - Limit set by NRC RG 1.180
- Unit is powered on and emissions recorded by an external antenna
 - Measurements are taken 7cm from the surface of the unit
 - May be performed in a worst-case scenario (doors open) as opposed to normal operation (doors closed)
- · Potential causes of failure
 - Unshielded power lines
 - Improper grounding
 - Internal components not designed for low-emissions operation

RE101 Magnetic Fields from 30Hz - 100 kHz, Back of the unit, Location B3

General Test Setup for RE101, Front on the unit, Location B3

Test Details: EMI/RFI Test (RE102)

- Radiated emissions, electric field
 - 2 MHz to 10 GHz
 - Test performed for vertical and horizontal emissions
 - Partitions into frequency ranges based on lab capabilities
- · Unit is powered on and emissions recorded by an external antenna
 - Measurements are taken at a distance of 1m
 - May be performed in a worst-case scenario (doors open) as opposed to normal operation (doors closed)
 - Test cases
 - Bidirectional 2 MHz to 30 MHz
 - Two 30 MHz to 200 MHz
 - Two 200 MHz to 10 GHz
- Potential causes of failure
 - Unshielded power lines
 - Improper grounding

HF Controls

- Internal components not designed for low-emissions operation
- Signal coupling in from communication equipment

RE102 Electric Fields from 30MHz - 200MHz, Horizontal

General Test Setup for RE102 from 200MHz - 1000MHz, Horizontal

Test Details: EMI/RFI Test (CS101)

- Conducted susceptibility, low frequency
 - 30 Hz to 150 kHz
 - Performed on AC power leads
- Unit power is routed through a signal generator
 - Signal applied to common power source point
 - Incoming AC power
 - Output of DC power supplies
 - Applied signal strength is as required in NRC RG 1.180
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Fluctuations in power supply outputs
 - Damage to sensitive components

Test Details: EMI/RFI Test (CS114)

- Conducted susceptibility, high frequency
 - 10 kHz to 30 MHz
 - Performed on AC power leads
 - Performed on signal lines
 - Different test levels for signal vs power leads
- Affected lines are run through inducting coils
 - AC and DC power tested separately
 - At least one of each type of signal line (Digital, Analog, C-Link) must be tested
 - Bundles of similar signal cables may be tested
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Fluctuations in power supply outputs
 - Damage to sensitive components
 - Lowered accuracy in analog signals

General Test Setup for CS114 from 10 kHz - 30MHz, Test on AC Bundle

General Test Setup for CS114 from 10 kHz - 30MHz, Test on Signal Bundle 2

Test Details: EMI/RFI Test (CS115)

- Conducted susceptibility, bulk cable injection
 - Impulse excitation
 - 2 Amperes
 - Performed on signal lines
- Affected lines are run through inducting coils
 - At least one of each type of signal line (Digital, Analog, C-Link) must be tested
 - Bundles of similar signal cables may be tested
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Fluctuations in power supply outputs
 - Damage to sensitive components
 - Lowered accuracy in analog signals
 - Spurious digital signals

General Test Setup for CS115 Impulse Excitation on Signal Bundle 1

Test Details: EMI/RFI Test (CS116)

- Conducted susceptibility, damped sinusoidal transients
 - 10 kHz to 100 MHz
 - 5 Amperes
 - Performed on signal lines
 - Partitioned into frequency ranges based on lab capability
- Affected lines are run through inducting coils
 - At least one of each type of signal line (Digital, Analog, C-Link) must be tested
 - Bundles of similar signal cables may be tested
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Fluctuations in power supply outputs
 - Damage to sensitive components
 - Lowered accuracy in analog signals
 - Spurious digital signals

General Test Setup for CS116, Damped Sinusoidal on Signal Bundle 1

Test Details: EMI/RFI Test (RS101)

- Radiated susceptibility, magnetic field
 - 30 Hz to 100 kHz
 - Applied magnetic field
 - Performed in a grid pattern over entire Test Specimen
- Antenna induces magnetic field locally
 - Similar to RE101, but susceptibility, not emissions
 - Test area size dependent on lab equipment
 - Entire Test Specimen area must be tested
 - Test duration is relatively long (~40 minutes per square)
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Damage to sensitive components

Test Setup for RS101, 30Hz - 100 kHz, Front of the EUT, Location B4

Test Details: EMI/RFI Test (RS103)

- Radiated susceptibility, electric field
 - 30 MHz to 10 GHz
 - Applied electric field of 10 V/m
 - Performed on front and back face of Test Specimen
- Antenna induces electric field
 - Similar to RE102, but susceptibility, not emissions
 - Vertical and horizontal fields applied
 - Antenna distance of 3 meters
- Potential impacts
 - Communication errors in controllers
 - Equipment resetting
 - Damage to sensitive components
 - Damage to communication equipment

General Test Setup for RS103 from 8GHz - 10GHz, Vertical Front (right side of the EUT)

- Per NRC RG 1.180
- Laboratory testing, potentially destructive test
 - Signal generator
 - Ground plane
 - Surges are applied to the external power leads of the Test Specimen
- Ring wave: IEC 61000-4-12
 - 2 kV and 4 kV exposures
 - Simulates open-circuit voltage waveforms
- Combination wave: IEC 61000-4-5
 - 2 kV / 1 kV and 4 kV / 2 kV exposures
 - Simulates lightning strikes, fuse operation, capacitor switching
- EFT: IEC 61000-4-4
 - 2 kV and 4 kV exposures
 - Simulates load switching in equipment and subsystems
 - Lower-level tests (0.5 kV) performed on signal lines

Test Details: Surge Withstand Test (Continued)

General Test Setup for EFT, AC Power Input

General Test Setup for EFT, J4 Signal Bundle

- Operability and Prudency Testing
 - Clear definition of what tests can and cannot be run during EQ testing
 - Automated data processing tools assist in generating results from months of data
 - Automated data logging tools need a high enough resolution to capture incorrect transitions
- Environmental Testing
 - Keep potential replacement cards on site
 - Have a plan for quick access to potential boards, especially during high heat test.
 - Include margins in test profile submitted to laboratory

- EMI/RFI
 - Use communication equipment that will pass EMI/RFI when possible
 - Select line filters and to include in test specimen specific to both the measured ranges, and known oscillator frequencies on modules
 - Verify all module bezels are secured in to the proper torque values, for the sake of proper grounding
- Seismic
 - Design all parts of the Test Specimen to endure the worst-case SSE
 - Check and re-check all connectors for tightness
 - Carefully check for damage between OBEs

Figure 1 - Environmental Stress Test

Figure 22 - Seismic Test - Post-Test

Questions?

