Cyber Security of HFC-FPGA Platform

Yin Guo
10/09/2018

Innovation Leadership Service
Presentation Outline

- Introduction
- Regulatory Requirements and Guides
- Cyber Security of HFC-FPGA Platform
Cybersecurity refers to those measures and controls, implemented to comply with 10 CFR 73.54, to protect critical digital assets against malicious acts of an adversary up to and including the design basis threat, as defined by 10 CFR 73.1.
Introduction

Why Cyber Security is essential?

✓ Regulatory Compliance
 ❖ Code of Federal Regulation
 ❖ Regulatory Guide

✓ Increasing exposure to cyber threats
 ❖ System Digitalization
 ❖ Use of COTS

✓ Lesson and experience learnt from other industries
 ❖ Bulk Power System

✓
Introduction

North American Electronic Reliability Corporation (NERC) and Federal Energy Regulatory Commission (FERC)
- Project 2008-06 Cyber Security, Critical Infrastructure Protection (CIP) Standards
 - CIP-002-04 to CIP-009-04 and implementation plans, Jan. 2011

Electric Power Research Institute (EPRI)

International Society of Automation (ISA)

National Institute of Standard and Technology (NIST)
- Special Publications in the 800 series
Code of Federal Regulations

- **10 CFR Part 73, Physical Protection of Plant and Materials**
 - **10 CFR Part 73.54 Protection of Digital Computer and Communication Systems and Networks**
 - 10 CFR Part 73.55 Requirements for Physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage.
 - **10 CFR Part 73.50 Requirements for Physical Protection of Licensed Activities**
 - **10 CFR Part 73.1 Purpose and Scope**
United States Nuclear Regulatory Commission (USNRC)

Presentation Outline

- Introduction
- Regulatory Requirements and Guides
- Cyber Security of HFC-FPGA Platform
Regulatory Requirements

Code of Federal Regulations:

Design Basis Threats:
(10 CFR 73.1)

(1). A determined violent external assault, attack;
(2). An internal threat;
(3). A land vehicle bomb assault, which may be coordinated with an external assault;
(4). A waterborne vehicle bomb assault, which may be coordinated with an external assault;
(5). A cyber attack
10 CFR 73.54(a)
The licensee shall provide high assurance that **digital computer and communication systems and networks** are adequately protected against cyber attacks, up to and including the **design basis threat (DBT)** as described in 10 CFR 73.1.

- **What kind of system shall be protected?** (10 CFR 73.54(a)(1))
 Ans: SSEP functions and support systems and equipment which, if compromised, would adversely impact SSEP functions

- **What kind of cyber attacks shall be considered?** (10 CFR 73.54(a)(2))
 Ans: (i) Adversely impact the integrity or confidentiality of data and/or software;
 (ii) Deny access to systems, services, and/or data; and
 (iii) Adversely impact the operation of systems, networks, and associated equipment.
Regulatory Requirements 10 CFR 73.54

1. Licensing Requirements
 - 10 CFR 73.54(a)

2. Cyber Security Program
 - 10 CFR 73.54(b)
 - 10 CFR 73.54(c)
 - 10 CFR 73.54(d)

3. Cyber Security Plan
 - 10 CFR 73.54(e)

4. Written Policy and implementing Procedures
 - 10 CFR 73.54(f)

5. Periodic Review
 - 10 CFR 73.54(g)

6. Records Retention
 - 10 CFR 73.54(h)
Cyber Security Program
- Establishment
- Implementation
- Maintenance
Steps to Establish and Implement a Cyber Security Program

- Analyze computer & communication systems & networks § 3.1.1~3.1.3
- Perform a review of the CDAs § 3.1.4
- Deploy defensive architecture § 3.2.1
- Address potential cyber risks to CDAs § 3.3
- Implement the security life-cycle activities to maintain CSP. § 3.4
• NRC categories security controls recommended by NIST SP 800 into 3 classes:
 – **Technical**
 - Access Control; Audit and Accountability; System and Communication Protection;
 - Identification and Authentication; System Hardening;
 – **Operational**
 - Media Protection; Personnel Security; System and Information Integrity; Maintenance;
 - Physical and Environmental Protection; Incident Response; Contingency Planning/Continuity of
 SSEP functions; Awareness and Training; Configuration Management;
 – **Management**
 - System and Service Acquisition
 - Security Assessment and Risk Management

• Appendix A: Generic cyber security plan template
• Appendix B: Technical Controls
• Appendix C: Operational and Management Controls
10 CFR Part 50 Domestic Licensing of Production and Utilization Facilities

- 10 CFR 50.55a(h): Protection and safety systems
- GDC 21 of Appendix A: Protection system reliability and testability
- Criteria III of Appendix B: Design Control

RG 1.152
Criteria for Use of Computers in Safety Systems of Nuclear Power Plants

- High Functional Reliability
- Design Quality
- A Secure Development and Operational Environment
Secure Development and Operational Environment (SDOE) for the Protection of Digital Safety Systems

- Establishment of SDOE

1). Measures and controls taken to establish a secure environment for development of the digital safety system against undocumented, unneeded and unwanted modifications.

2). Protective actions taken against a predictable set of undesirable acts (e.g., inadvertent operator actions or the undesirable behavior of connected systems) that could challenge the integrity, reliability, or functionality of a digital safety system during operation.
HFC Cyber Security Program

- More than 40 years operating history of HFC platform in power plant
- HFC has established, implemented and maintained a cyber security program in accordance with 10 CFR 73.54, RG 5.71 and RG 1.152

Implementation for new FPGA-based platform design

- Identify CDA
- Identify Vulnerability
 - Design
 - Process
 - Operation and Maintenance
- Countermeasures
- Implementation
Presentation Outline

- Introduction
- Regulatory Requirements and Guides
- Cyber Security of HFC-FPGA Platform
FPGA-based platforms have characteristics that tend to increase the level of difficulty to be invaded

- **Directly implement the required I&C functions:**
 Do not contain high-level, general-purpose components that could be easily diverted or hijacked for malicious purposes;

- **FPGA re-programming protection measures:**
 Anti-fuse technology

- **No operating system and peripheral software:**
 Reduce overall complexity, and increase reliability

- **Separation of independent function:**
 Prevent from failure postulating and separated function interfering with one another, facilitate verification, analysis, testing and ultimately, safety justification
Example of HFC-FPGA based Platform Configuration

Note: C-Link can be configured as one-way or two-way communication.
HFC-FPGA Application

Diagram:

- **Flash**
 - Application and Configuration Data

- **Control FPGA**

- **Diagnostic FPGA**
 - Application and Configuration Data

- **HFC-FPGA Module**

- **Other Onboard Components**
HFC-FPGA Application

<table>
<thead>
<tr>
<th>Design</th>
<th>Vulnerabilities</th>
<th>Security Design Features</th>
</tr>
</thead>
</table>
| Network | • Structure, protocol and data format, timing and sequence of Non-proprietary network is known to public | • HFC proprietary network structure
- Hardcoded nodes and address
- HFC proprietary communication protocol
- Predefined data package length, format
- Predefined timing and sequence
- Integrity validation by CRC check
• Communication link isolation and independence
• Isolated with external network
• Physical and logical access controls |
| Onboard Data | • Alteration to Application, configuration data, and FPGA load | • Download of FPGA build is only allowed in offline mode and security key is required
• Only part of Application (e.g. setpoint) and configuration data can be updated online
• Runtime security features
- Runtime checking of any change in configuration data file
- Protection of unauthorized updates of configuration data file
• Physical and logical access controls |
HFC-FPGA Platform Development Process

<table>
<thead>
<tr>
<th>Lifecycle</th>
<th>Critical Digital Assets</th>
<th>Vulnerabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Requirements Documents</td>
<td>• Unauthorized updates to the documents
• Uncontrolled version of documents</td>
</tr>
<tr>
<td>Design</td>
<td>Design Documents Test Documents</td>
<td>• Unauthorized updates to the documents
• Uncontrolled versions of documents
• Unnecessary/Unaddressed/Unwanted Designs/Functions</td>
</tr>
<tr>
<td>Implementation</td>
<td>FPGA Source Code Test Documents</td>
<td>• Unauthorized updates to the source code
• Uncontrolled versions of source code
• Unnecessary/Unaddressed/Unwanted source code</td>
</tr>
<tr>
<td>Test</td>
<td>FPGA build Test Documents</td>
<td>• Unauthorized updates to the build processing
• Unauthorized release of source code
• Unnecessary/Unaddressed executable functions</td>
</tr>
</tbody>
</table>
Cyber Security Measures

Unauthorized change to CDAs in the development lifecycle

- Access Control
 - Physical Isolation of access Path
 - Least privilege policy
 - Account management
 - Change control and change track
- Identification and Authentication
 - User identification and authentication
 - Password requirements
 - Device identification and authentication
- Media Protection
 - Media access
- Personal Security
 - Personnel termination or transfer
- Physical and Environmental Protection
- System Hardening
Cyber Security of HFC-FPGA Based Platform

Cyber Security Measures

Uncontrolled version of CDAs
- Media Protection
- Configuration Management
- Configuration Change Control
- Awareness and Training
- Identification and Authentication

Unnecessary/unaddressed/unwanted functions/designs
- Audit and Accountability
- Configuration Change Control
- Integrate cyber security program into the product lifecycle process
Summary

• HFC has established, implemented and maintained a cyber security program in accordance with the regulatory requirements and guide, and applicable industrial standards.

• The vulnerabilities identified in the HFC-FPGA platform design and development process were properly addressed.
Thank you for your attention!