
© 2018 Electric Power Research Institute, Inc. All rights reserved.

Dr. Carl Elks, Co-PI, Virginia Commonwealth University
Dr. Ashraf Tantawy, Research Professor, Virginia Commonwealth University
Matt Gibson, Program PI, EPRI
Rick Hite, Smitha Gautham, Chris Deloglos, Athira Jayakumar, Shawkat Khairullah
- Virginia Commonwealth University
Jason Moore, MathWorks

Andrew Nack, Paragon Inc.

Oct. 8th 2018

Lessons and Experiences
Learned Applying Model Based
Engineering to Safety Critical
FPGA Designs

A US-DOE Funded Project under the NEET Program

11th International Workshop on the Application of
FPGAs in NPPs

2 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Who we are:
 Virginia Commonwealth University Department

of Electrical and Computer Engineering
– Located in Richmond, VA, USA
– +30,000 enrolled students in university

 Dependable and Secure Cyber-Physical
Systems Lab
– Dr. Carl R. Elks, Ph.D.
 Emal: crelks@vcu.edu

– Our lab is multidisciplinary, comprising faculty and
research members whose expertise spans across
hardware architectures, dependability and cyber-
security, Unmanned Autonomous Systems,
Nuclear Energy Instrumentation and Control,
MEMs devices, and advanced sensors.

– Our lab has a strong focus on experimental
methods and practices, we develop techniques
and methods that are applied to real world
systems or verified with actual data.

3 © 2018 Electric Power Research Institute, Inc. All rights reserved.

REALIZING VERIFIABLE I&C AND EMBEDDED
DIGITAL DEVICES FOR NUCLEAR POWER
 Context: A DOE NEET-2 project led by

EPRI, VCU principle research organization
 2015-2019
 Goal: Develop science-based technologies

and approaches for NPP I&C systems that
show the potential for:
– Reducing qualification burden of I&C systems
– Reducing complexity to enhance V&V

awareness
– Address SW Common Cause Failures issues

associated with digital I&C systems.
 Participants

– Matt Gibson, Program PI, Electric Power
Research Institute

– Dr. Carl Elks, PI, Virginia Commonwealth
University

– Rick Hite, Smitha Gautham, Chris Deloglos,
Athira Jayakamar-Virginia Commonwealth
University

– Dr. Ashraf Tantawy, Virginia Commonwealth
University

– Jason Moore, Mathworks

The SymPLe Project

4 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Research Perspective

What’s the problem we are trying to address?
– Safety Critical SW based systems expensive to

develop
– Certification/Licensing is even more expensive
 I&C systems in the context of nuclear power

may not need to be derivatives of software
intensive systems and by extension, not
carrying the complexity associated with the SW
intensive systems.
Our approach called SymPLe is to rethink digital

I&C from a perspective of three views:
Simplicity, Extensibility and Verifiability.

5 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Comparative View of I&C “Stacks”

6 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Architectural Concepts

 HW FPGA based design
– PLC-like Function Block programming

 Constrain design to favor verifiable execution behavior
 Constrain program composability rules to favor testing

and comprehension
 Design for predictability - Well understood behaviors
Well formed semantics – no side effects
• Engineer Accessible: SymPLe is explicitly specified in a
manner (e.g., language; structure) that is comprehensible to
the community of its users and reviewers.
•Function Blocks

7 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Concept

SymPLe is an overlay
•SymPLe is an architectural viewpoint that seeks to maximize reasoning,

transparency and safety evidence while avoiding unnecessary complexity.
• Engineer Accessible: By adopting “PLC like” overlay architecture, we hope to

make SymPLe extensible like a CPU based architecture – function blocks are the
execution units.

•SymPLe is limited in what it can do – it trades computational power for
verifiability.

8 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Architecture
 Function Blocks – elementary

functions used to create
safety I&C functions.

 Local Control-responsible for
dispatching:
– the sequence of FB

execution
– marshaling inputs and

outputs
– and managing local state.

 global controller - provides
global coordination and
synchronization of task lanes

 Runtime Verification – Formal
checking of executions, I/O,
and non-interference.

 True Concurrency between
Lanes

9 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Function Block Architecture

 Common architecture for
all SymPLe function
blocks
– Separation of control

and dataflow with clear
and defined
interconnections

– Formal Semantics
– Inspired by IEC-61499

 SymPLe architecture
variants differ in the
control path of the
generic function block
– Autonomous Function

Block
– Lite Function Block

Local
Schedule
Control

10 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Ok, How do we go from a concepts to
implementation – in 2 years?
 VCU had extensive experience with HW

Synthesis tools
– Xilinx Vivado, Altera Quartus, full Mentor Graphics

tool chains
– All of our students use Xilinx tools for realizing

embedded systems using SoC FPGAs.
 Formal verification will be a large part of the

effort
– Must have accessible formal verification

 We also want to produce “evidence” that is
accessible to stakeholders

 Given the above, model based engineering
approach seemed appealing.
– Wide-spread use in Automotive and Aviation
– Real example of reduced costs and improved quality

and safety
– But, MBD & E not widely used in FPGA or HW based

designs… yet…
– Maybe a big opportunity, or big risk?

11 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Your What's are my How's
 It is often the case that

system development
does not proceed in an
orderly top-down
fashion.
 But rather through co-

evolution of
requirements and
architectural design
 This is especially true for

concept to
implementation efforts.
 Model based design is

very good, in this regard.

12 © 2018 Electric Power Research Institute, Inc. All rights reserved.

SymPLe Development and Design Assurance
Workflow

 Currently following IEC
61508 SIL 3/4

 Verification at each step
from requirements to
implementation

 Math works Tools used
throughout V&V workflow
– Prevents gaps in V&V from

oversight or
misinterpretation

 Critical toolboxes are
TUV certified

13 © 2018 Electric Power Research Institute, Inc. All rights reserved.

End-to-End Property Verification using Simulink
DV and MENTOR GRAPHICS Questasim

Verifies that actual SymPLe HW has inherited the proven property of models

14 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Tool Options We Considered

 Primary criteria –
– Legacy with real safety critical system

design
– Tools must be cleanly integrated into

a IDE
– Must generate clean HDL from

models
– Formal verification tools
– Bi-directional traceability from low-

level code to requirements
– Commercially supported
– Tool qualification (nice, but not strictly

required)
 The contenders

– SCADE – Ansys
– Mathworks –Simulink, Design Verifier,

and associated toolboxes
– GME – Vanderbilt academic tool

15 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 1: The lots of moving parts problem

 The state of-the-art in Mathworks IDE is a powerful design and verification environment, but it
comes at a cost .

 Lots of coupled toolboxes for automatic HDL and C code-generation, simulation coupled with
requirement monitoring, co-simulation of heterogeneous models, model-based analysis
including verification of compliance of requirements and specification, formal verification model-
based test-generation, rapid prototyping, and virtual integration testing

 You have to invest time and training to unleash the power of these dedicated specialized tools.
– Simulink
– Design Verifier
– Simulink Test
– Simulink Report Generator
– HDL Coder
– Verification and Validation – Multiple toolboxes
– HDL Verifier
– IEC Certification Kit (61508)
– Fixed-point Designer
– Simulink Stateflow

 Synthesis Tools
– Xilinx Vivado
– Mentor Graphic QuestaSim, Propcheck, Propcover
– Custom Tool - MBAC: runtime verification

80% of architectural design is here.
These are the toolboxes you need for
model-based FPGA design following
IEC 61508

16 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 2: Vertical Integration – traceability
of requirements to functions to implementations
 In general, work well. Requirements Management is now well-developed in Matlab Simulink.
 Automatic report test example generators are nice for standards..
 Lower level integration into HW synthesis tools (so far so good)
 Requirements captured in Simulink Requirements Editor or external requirements document.
 Requirements are linked to where they are implemented in the model with a bi directional link.
 Low level requirements can also be directly linked to high level/system level requirements directly.
 Linked requirements are then placed textually as comments in any generated code.
 Generated code comes in 2 versions: pure text and HTML. HTML version the linked requirements are

links that will navigate to the requirements document.
 Linking produces traceability matrix

Linked to model Shows up as a comment

17 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 3: Horizontal Model Structuring

 You need to pay attention to this…
 Horizontal Models are models that support

lifecycle activities. Determines the role the
model plays in the development life cycle.

 It was not easy to see how to structure
models at the beginning. We tended to mix
models across domains.

 Good horizontal structuring facilitates
parallel independent V&V and
development via separation of concerns
– As long as modelers agree on input and

output interface semantics then teams can
independently build prover models, testing
models, and environment models –
independent of the design model.

 Allows expert teams to focus on their
domain

 We partition both horizontally and vertically
to achieve maximal utility from models

18 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Example: How the functional and Property
models play together
Design Verifier
 A collection of verification tools, of which the strongest is formal model checking, and K-induction.
 Used for Property Proving: Properties are written for critical conditions that has to hold true in the

design. Design verifier formally verifies by checking the properties in the entire state space for all
inputs. If the properties are falsified, detailed report with counter examples is generated

 Design verifier can also be used to generate test cases to increase coverage

Model and the Verification Subsystem having the Properties that have to be
verified by the Design Verifier

Functional Model

Property Model

19 © 2018 Electric Power Research Institute, Inc. All rights reserved.

How the Horizontal models play together:
Design Verifier
 One of the properties that we wanted to check was falsified and a detailed report was generated

indicating the falsified property with a counterexample

Property to check that the latch_input stays true for
only one clock cycle

Design verifier report indicating the falsified
property and a detailed counterexample

20 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Example: How the models play together

Fig: Counterexample indicating the input conditions for which the property failed

21 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 4: Usability Across Specialization Domains

 Does MBE tools help team members convey
“specifics” of their domain to others?

 So far, we seem to think so…
 The ambiguity arising due to requirements

communication via Natural Language seems to be
reduced … precise models with assumptions help
the translation…

 The inference is less chances of errors due to
requirement misunderstandings by the
implementer.

 Single, common algorithmic/model development
environment allows different stakeholders into the
picture early. Identification of missed or incomplete
requirements is better facilitated.

 Model management can be a problem when you
have lot’s of changes..

Common environment for
understanding

22 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 5: Common environment for understanding

 Very well – could be a key to regulator/supplier evidence
communication

 Single, common algorithmic/model development environment allows
different stakeholders into the picture early. Identification of missed or
incomplete requirements is better facilitated.

 No mix of prototyping languages
 Commonality fosters sharing, algorithm/utility reuse
 Use a single, secure, collaborative, web-based sharing repository

(github/Gitlab, bitbucket, etc…)
 Functional models allow low-level designs and implementations to be

critically reviewed with better comprehension.

23 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 6: Evidence based Artifacts are useful for
reviews
 Very well, needs some help from lower level Synthesis tools.
 We found that models, and the results/data are very good for confirming or refuting a

claim.
 Requirements, sub-requirements and assumptions are explicitly chained in all models
 Testing, formal verification in the Simulink
 When you get to VHDL and transfer to HW synthesis you may need to check to see if you

can trace bi-directionally.
 Cite preliminary results for Paragon.

 IMAGE REQ DOC TO THE MODEL TO THE TEST RESULTS TO THE PROVER
RESULTS

 PROP CHECK IMAGE

24 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 7: Be careful with Models to HDL Code
 Not all blocks, block parameter settings, and design patterns in the Simulink libraries are

HDL compatible
 Much time spent on development of a working model only to find HDL code generation

incompatibilities.
 Simple solution: run script hdllib. Hides all incompatible tool boxes.

HDL incompatible chart because of setting below

This setting must
be checked

Checking box required explicit
definition of chart output at
every state

25 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 8: Risk management in the design space

 More complex designs (but potentially better
performance) can be identified early and
assessed in terms of verification risk.

 The model based verification tools can provide
preliminary feedback

 We did this early on with function blocks
designs.

 Incremental HDL code generation compatibly
checks

 Incremental Design Verifier compatibility checks
 Model Advisor usage to perform incremental

modeling standard compliance
 Management of design complexity to assist

formal verification
– Limit functionality of blocks to logical units
– Prove properties about individual units
– Use proven properties to build arguments that support higher

level properties and requirements.

 Strict data typing defined in parameter setup
file.
– Ensures consistency of typing wherever used.
– Also allows changing of the data type with a single change in

the parameter file without the need to revise manually
wherever the data type appears.

– Data types in this context include composition of buses, Qmn
format for data in architecture

Model Advisor Menu

26 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 9: Co-simulation is nice
 Test cases used in models help us demonstrate equivalency between

model and downstream components: HDL, netlists, and hardware
implementation.

 Model confirms implementations

27 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation 9 Continued

• HIL was setup for the Emergency Diesel
Generator (EDG) application.

• A simple user interface was built using
National Instruments LabVIEW software to
manipulate EDG inputs and monitor the
outputs.

• SymPLe architecture, implementing EDG
logic, was downloaded to National
Instruments cRIO controller FPGA.

• Using modular design, a SymPLe
subsystem block was developed in
LabVIEW, where it could be reused in other
test programs.

EDG
Monitoring &
Control PC

SymPLe + EDG
function

I/O
Interface

Will be
replaced by
GSE GPWR
simulator

28 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Overall Experience Summary
 Generally very pleased with the outcomes so far.
 Investment is necessary to reap the full benefits

– Does not eliminate HW synthesis tools, but allows reasoning to be “moved” up to
where more stakeholders are inclusive

– Much more formal in it’s approach. Which is a good thing…

 It’s a paradigm shift from traditional “platform” based design
 Great for making the “evidence” accessible and transparent to

reviewers, stakeholders.
– Paragon Inc is reviewing the models, evidences, and results as part of a “mock” CGD.

 We are finding difficult bugs, which is a metric in itself..
 Would have been very difficult to achieve project goals in traditional HW

synthesis tools
 Not perfect, room for improvement, but the benefits (at least to us) are

very compelling.

29 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Model-Based Development Examples(circa
2010)

Company Product Tools Specified & Autocoded Benefits Claimed
Airbus A340 SCADE

With Code
Generator

• 70% Fly-by-wire Controls
• 70% Automatic Flight Controls
• 50% Display Computer
• 40% Warning & Maint Computer

• 20X Reduction in Errors
• Reduced Time to Market

Eurocopter EC-155/135
Autopilot

SCADE
With Code
Generator

• 90 % of Autopilot

• 50% Reduction in Cycle Time

GE &
Lockheed
Martin

FADEDC Engine
Controls

ADI Beacon • Not Stated

• Reduction in Errors
• 50% Reduction in Cycle Time
• Decreased Cost

Schneider
Electric

Nuclear Power
Plant Safety
Control

SCADE
With Code
Generator

• 200,000 SLOC Auto Generated
from 1,200 Design Views

• 8X Reduction in Errors while
Complexity Increased 4x

US
Spaceware

DCX Rocket MATRIXx • Not Stated

• 50-75% Reduction in Cost
• Reduced Schedule & Risk

PSA Electrical
Management
System

SCADE
With Code
Generator

• 50% SLOC Auto Generated • 60% Reduction in Cycle Time
• 5X Reduction in Errors

CSEE
Transport

Subway
Signaling System

SCADE
With Code
Generator

• 80,000 C SLOC Auto Generated • Improved Productivity from
20 to 300 SLOC/day

Honeywell
Commercial
Aviation
Systems

Primus Epic
Flight Control
System

MATLAB
Simulink

• 60% Automatic Flight Controls • 5X Increase in Productivity
• No Coding Errors
• Received FAA Certification

30 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Requirements

Properties

Models a

Analysis

Concepts

Model b

Code
Generation Implementation

= ?

31 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Functional

Models

SLDV

Proof

Obligations

Property

models
Requirements

32 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Advantage of Model Checking

Testing Checks Only the Values We Select
Even Small Systems Have Trillions (of Trillions) of Possible Tests!

33 © 2018 Electric Power Research Institute, Inc. All rights reserved.

Advantage of Model Checking

Model Checker Tries Every Possible Input and State!

	Lessons and Experiences Learned Applying Model Based Engineering to Safety Critical FPGA Designs��A US-DOE Funded Project under the NEET Program ��11th International Workshop on the Application of FPGAs in NPPs
	Who we are:
	REALIZING VERIFIABLE I&C AND EMBEDDED DIGITAL DEVICES FOR NUCLEAR POWER�
	Research Perspective
	Comparative View of I&C “Stacks”
	SymPLe Architectural Concepts
	SymPLe Concept
	SymPLe Architecture
	Function Block Architecture
	Ok, How do we go from a concepts to implementation – in 2 years?
	Your What's are my How's
	SymPLe Development and Design Assurance Workflow
	End-to-End Property Verification using Simulink DV and MENTOR GRAPHICS Questasim
	Tool Options We Considered
	Observation 1: The lots of moving parts problem
	Observation 2: Vertical Integration – traceability of requirements to functions to implementations�
	Observation 3: Horizontal Model Structuring
	Example: How the functional and Property models play together�
	How the Horizontal models play together: Design Verifier
	Example: How the models play together
	Observation 4: Usability Across Specialization Domains
	Observation 5: Common environment for understanding
	Observation 6: Evidence based Artifacts are useful for reviews
	Observation 7: Be careful with Models to HDL Code�
	Observation 8: Risk management in the design space
	Observation 9: Co-simulation is nice
	Observation 9 Continued
	Overall Experience Summary�
	Model-Based Development Examples(circa 2010)
	Slide Number 30
	Slide Number 31
	Advantage of Model Checking
	Advantage of Model Checking

