

## HFC-6000 FPGA Platform

#### **JORDAN MOTT**

2018 FPGA Conference 10/8~10/11

**Innovation Leadership Service** 

© Copyright by DOOSAN HF Controls Corp. 2018 All Rights Reserved.



### **Table of Contents**

- HFC-6000 I&C DEVELOPMENT
  - ✓ GOALS AND OBJECTIVES
  - ✓ APPLICABLE REGULATORY STANDARDS AND GUIDANCE
  - ✓ EVOLUTION OF HFC-6000 TO HFC-FPGA SYSTEM
- HFC-FPGA SYSTEM DESCRIPTION
  - ✓ HFC-FPGA PLATFORM CONFIGURATIONS
  - ✓ BASIC BUILDING BLOCKS FPU, FCPU, GW
- HFC-FPGA CARD LINEUP
  - ✓ CHARACTERISTICS AND FEATURES
- HFC-FPGA APPLICATION DEVELOPMENT
- HFC-FPGA DESIGN PROCESS
- HFC-FPGA SUMMARY
- HFC-FPGA Q & A



### **HFC I&C DEVELOPMENT**

- HFC-6000 PLATFORM IS A COMBINATION OF ADVANCED MICROPROCESSORS, DSP, AND FPGA
  - RECEIVED US NRC SE REPORT IN APRIL, 2011 AND TUV SIL3 IN 2010/2013/2018
- HFC-FPGA PLATFORM IS SUITABLE FOR SOME SAFETY CONTROL APPLICATIONS IN NUCLEAR POWER PLANT DUE TO THE DETERMINISTIC NATURE OF FPGA FSM BASED DESIGNS
- THE DEVELOPMENT OF A GENERIC FPGA SAFETY I&C PLATFORM DEPENDS UPON THE MATURITY AND ENHANCEMENT OF FPGA TECHNOLOGY IN ORDER TO IMPROVE THE CALCULATION DENSITY AND NETWORKING CAPABILITY.
- HFC TREATS FPGA DESIGNS AS A MIX OF SOFTWARE AND HARDWARE
  - DEVELOPMENT FOR FPGA APPLICATIONS FOLLOWS SYSTEM, SOFTWARE, AND HARDWARE DEVELOPMENT LIFECYCLE PROCESSES.
- DEVELOPMENT GOALS AND OBJECTIVES
  - HFC 'S GENERIC FPGA NUCLEAR SAFETY I&C PLATFORM IS BASED UPON THE FOUNDATION OF CURRENT HFC-6000 TECHNOLOGY.
  - HFC HAS FILED FPGA HFC-6000 DESIGN AS AN AMENDMENT TO CURRENT SER.
  - TO ACQUIRE US NRC SE REPORT FOR THE HFC-6000 FPGA AMENDMENT .



### **REGULATORY GUIDANCE AND INDUSTRY STDS**

- THE NUREG/CR-7006 IS THE CURRENT NRC REGULATORY GUIDANCE FOR THE FPGA.
- OTHER APPLICABLE REGULATORY GUIDANCE AND INDUSTRY STANDARDS INCLUDE
  - NUREG-0800 BTP 7-14,
  - NRC RG 1.152, 1.168, 1.169, 1.170, 1.171, 1.172, 1.173
  - DO-254 (DESIGN ASSURANCE),
  - IEEE STD 603
  - IEEE STD 1012-2004 AND 2012 (V&V),
  - IEC 61508 (FUNCTIONAL SAFETY TUV)
  - IEEE STD 7-4.3.2 (SAFETY DIGITAL SYSTEMS).
- THE INTENT OF HFC'S FPGA DESIGN AND DEVELOPMENT PROCESS IS TO MEET RELEVANT REGULATORY REQUIREMENTS AND INDUSTRY STANDARDS.



### **HFC-6000 PLATFORM**

#### Features

#### HFC-6000



- Nuclear safety class 1E qualified
- Modular Packaging (19"/23" Rack)
- Redundant and Triple Redundant
- DCS and Loop application
- Dedicated CSM & M/A stations
- Nuclear qualified Flat Panel Display
- Superior Response time
- Thousands controllers installed in Nuclear Power Plants

#### Application

- Nuclear Power Plant Safety
- Turbine Control
- Mission Critical Control
- TÜV SIL-3 Certified



- HFC-FPGA I&C SYSTEM TO USE THESE HFC-6000 SAFETY QUALIFIED FEATURES
  - MECHANICAL
    - CARD FORM FACTOR, 19 INCH 5U CHASSIS, FIELD CONNECTIVITY, SEISMIC CHASSIS/CABINET
  - ELECTRICAL REDUNDANT POWER AND COMMUNICATION INTERFACES
  - APPLICATION DEVELOPMENT
    - SHARES HFC-6000 TOOLS FOR DEVELOPING APPLICATIONS AND HMI GRAPHICS
  - REDUNDANCY CENTRALIZED CONTROLLER TO IMPLEMENT REDUNDANCY
  - I/O MODULE LINEUP MICROPROCESSOR I/O MODULES AVAILABLE IN FPGA IMPLEMENTATIONS



### **Typical FPGA HFC-6000 EQ Cabinet**



- ✓ HFC's nuclear safety class cabinet
- Three(3) racks of FPGA PCB modules for typical parameterized safety and protection functions; the Test Specimen Application Program (TSAP) includes the following:
  - o Functional Diesel Generator Load Sequencer
  - Functional Diverse Protection System (DPS) 2 Ch
- ✓ 5U Racks up to 8 per cabinet
- Termination boards, Connection cards, cables
- A rack mounted Personal Computer (PC) with Flat Panel Device (FPD) and Human Machine Interface (HMI) utility software
- ✓ Network Hubs and Fans
- Rack mounted power supply set 40ms withhold time, 24VDC
- Power distribution and a set of circuit breakers

### **HFC-6000 EVOLUTION TO HFC-FPGA**

- DUAL FPGA ARCHITECTURE REPLACES THE MICROPROCESSOR FOR CONTROL
  - CONTROL FPGA F-LINK TX/RX TO COMMUNICATE WITH OTHER CARDS IN THE RACK
    - MAIN APPLICATION/PROCESSING ELEMENT DOING APPLICATION AND/OR I/O PROCESSING
  - DIAGNOSTIC FPGA F-LINK RX VERIFIES ACTIVITY AND PROCESSING RESULTS OF THE CONTROL FPGA
    - DISABLES CONTROL FPGA WHEN A FAULT IS DETECTED
      - FAULTS CAN BE HARDWARE OR APPLICATION/I/O PROCESSING RELATED
  - FPGAS COMMUNICATE STATUS AND PROCESSING RESULTS OVER A INTRA-FPGA DATA BUS
    - EXCHANGE HEART BEAT MESSAGES TO VERIFY HEALTH
  - CONTROL FPGA MONITORS FOR POWER FAULTS IN THE DIAGNOSTIC FPGA AND VICE VERSA
  - EACH FPGA HAS APPLICATION DATA STORED IN A NON VOLATILE MEMORY
    - READ AT POWER UP AND USED TO INITIALIZE I/O AND CONTROLLER CARD FPGA MEMORIES
- ALL C CODE CONTROL FUNCTIONS REPLACED WITH FPGA FSM BASED PROCESSES
  - HFC HAS A LARGE LIBRARY OF C FUNCTIONS THAT CAN BE IMPLEMENTED IN THE HFC-FPGA SYSTEM



### **HFC-FPGA SYSTEM DESCRIPTION**

- TWO ARCHITECTURE OPTIONS FOR THE HFC-FPGA SYSTEM
  - DISTRIBUTED NO CENTRALIZED CONTROLLER, EACH I/O CARD DOES APPLICATION PROCESSING
    - I/O CARDS (FPU) EXCHANGE POINT INFORMATION DIRECTLY
      - FILTERING ELIMINATES UNDESIRED VALUES
      - APPLICATION DISTRIBUTED, FPU RUN PORTIONS OF THE APPLICATION
  - CENTRALIZED APPLICATION PROCESSING IN THE FCPUX ONLY
    - I/O CARDS (FPU) DO MINIMAL PROCESSING AND SEND/RECEIVE RESULTS TO/FROM THE CONTROLLER
- FPGA NODE 1 TO 2 RACKS
  - EACH RACK CAN CONTAIN UP TO 14 CARDS (FPU I/O, FPGA CONTROLLERS, OR GATEWAYS)
  - RACKS ARE INTERCONNECTED WITH RS-485 CABLING (EXTENSION OF F-LINK)
  - FPGA LINK (F-LINK) IS A TOKEN PASSING PROTOCOL
    - OPERATES WITHIN THE FPGA NODE WITH A PERIOD OF 6.8 MSEC.
    - SUPPORTS UP TO 26 FPGA PROCESSING UNITS AND 2 CONTROLLERS



### **HFC-FPGA SYSTEM DESCRIPTION**

#### • FPGA PROCESSING UNITS (FPU)

- CAPABLE OF HANDLING BOTH DIGITAL AND ANALOG ALGORITHMS.
- CONFIGURED AS SINGLE, REDUNDANT OR TRIPLE MODULAR REDUNDANT (TMR) SET.
- COMMUNICATE WITH OTHER FPU AND CONTROLLERS VIA REDUNDANT F-LINK
  - TOKEN-PASSING PROTOCOL (SIMILAR TO HFC'S QUALIFIED C-LINK PROTOCOL)
  - 12.5 MBPS LINK ALLOWS FPUS TO EXCHANGE THEIR I/O STATUS AND INTERNAL DATABASE

#### • FPGA CONTROLLER PROCESSING UNIT (FCPUX)

- FPGA BASED CONTROLLER CENTRALIZES APPLICATION IN ONE MODULE
- CAN BE USED IN REDUNDANT CONFIGURATIONS
- PERFORMS ANALOG AND DIGITAL PROCESSING ON INPUT FPU DATA
- COMMUNICATES APPLICATION RESULTS TO OUTPUT FPU
- COMMUNICATES APPLICATION STATUS WITH THE FPGA GATEWAY
  - USES A PRIVATE LINK TO THE GATEWAY CALLED G-LINK
- FCPU REDUCED CAPACITY FPGA CONTROLLER PROCESSOR UNIT WITH ONBOARD DI/DO



### **HFC-FPGA SYSTEM DESCRIPTION**

#### • FPGA GATEWAY

- TERMINATES G-LINK DATA FROM FPGA CONTROLLER
- RE-BROADCASTS CONTROLLER DATA USING THE QUALIFIED ETHERNET BASED C-LINK PROTOCOL
- CAN BE USED IN REDUNDANT CONFIGURATIONS



### **HFC-FPGA COMMUNICATION INTERFACES**





### **HFC-FPGA DISTRIBUTED SYSTEM CONFIGURATION**



Typical HFC-FPGA system configuration that implements a control system in a Distributed Loop Control Scheme

- Two (2) or more FPU I/O Modules and redundant Gateway Controller communicate with:
  - Safety C-Link to other FPGA Nodes
  - F-Link within the FPGA Node
- Each HFC-6000 FPGA Node is capable of connecting up to 26 FPU Control Modules in two (2) racks. All FPUs are connected via 12.5MBPS F-Link.

•Accessories (i.e. Power Supply, Hubs,...)



### **REDUNDANCY IN A DISTRIBUTED ARCHITECTURE**

#### **Non-Redundant**



#### Redundant



#### **Triple Redundant**



This diagram illustrates the system configuration of HFC-6000 FPGA Load Sequencer for NPP application -

- The Load Sequencer logic for NPP can be programed into four (4) HFC-6000 FPGA Processing Units.
- The system can be configured in one of following cases:
  - ✓ Non-Redundant
  - ✓ Dual Modular Redundant (DMR) with 1002D voting
  - ✓ Triple Modular Redundant (TMR) with 2003D voting
- Voting in DMR and TMR on input signals, controller execution and output signals.



### HFC-FPGA CENTRALIZED SYSTEM CONFIGURATION



24V

PSR

24V

PSR

24V

PSR

24V

PSR

Typical HFC-FPGA system configuration that implements a control system in a Centralized Control Scheme

- Redundant FCPUX and its FPU I/O Modules with redundant Gateway Controller with:
  - Safety C-Link to other controllers
  - G-Link to Gateway Controller
  - F-Link to its FPU I/O Modules
- Each redundant FCPU is capable of connecting up to 24 FPU I/O Modules in two (2) racks via 12.5MB F-Link.
- Accessories (i.e. Power Supply, Hubs,...)



13

### **HFC-FPGA I/O AND CONTROLLER CARD LINEUP**

#### • HFC-FCPUX – FPGA CONTROL PROCESSOR UNIT – USED ONLY IN CENTRALIZED CONTROL SYSTEM

- APPLICATION PROCESSOR CONTROL MODULE USING DATA RECEIVED FROM SYSTEM I/O CARDS
- REDUNDANCY INTERFACE TO MATE FCPUX
  - SUPPORTS REDUNDANCY OVER REDUNDANCY INTERFACE
- SEPARATE G-LINK INTERFACE TO EWS GATEWAY CARDS

#### • HFC-FPUD – FPGA PROCESSOR UNIT – DIGITAL TYPE

- FPUD01 FPUD I/O CARD WITH 16 CHANNELS DI (COMMON OR ISOLATED) AND 16 CHANNELS DO (C-FORM RELAY)
- FPUD02 FPUD I/O CARD WITH 32 CHANNELS DI (COMMON OR ISOLATED MODE)

#### • HFC-FPUA – FPGA PROCESSOR UNIT – ANALOG TYPE (COMMON OR ISOLATED MODE)

- FPUA01 FPUA ANALOG I/O CARD WITH 16 CHANNELS AI 4 TO 20 MA
- FPUA02 FPUA ANALOG I/O CARD WITH 16 CHANNELS AI 0 TO 10 V



### **HFC-FPGA I/O AND CONTROLLER CARD LINEUP**

- HFC-FPUAO FPGA PROCESSOR UNIT ANALOG OUTPUT TYPE
  - FPUAO01 FPUAO ANALOG I/O CARD WITH 8 CHANNELS AO 4 TO 20 MA
  - FPUAO02 FPUAO ANALOG I/O CARD WITH 8 CHANNELS AO 0 TO 10 V
- HFC-FPUM FPGA PROCESSOR UNIT M TYPE (SUPPORTS 3 RANGES TO 200 C AND 2000 OHM RTD)
  - ANALOG I/O CARD WITH 8 CHANNELS OF TYPE M 100 OHM PLATINUM RTD INPUTS
- HFC-FPUL FPGA PROCESSOR UNIT E TYPE (SUPPORTS 3 RANGES TO 500 C)
  - ANALOG I/O CARD WITH 8 CHANNELS OF TYPE E THERMOCOUPLE INPUTS
- HFC-HSIM HIGH SPEED INTERFACE MODULE
  - FPGA BASED INTRA-SAFETY SYSTEM FIBER OPTIC COMMUNICATION LINK
  - 2 OPTICAL CHANNELS CONFIGURABLE AS EITHER TRANSMIT OR RECEIVE



### **HFC-FPU FPGA Based I/O Modules**

#### HFC-FPU DI/DO/AI/AO/RTD/TC

#### **Product Features**

- FPGA based intelligent module diagnostics and self checking capabilities
- \*Power on reset circuitry with onboard watchdog timer
- Redundant power feeds with onboard diode auctioneering and fuse protection
- Redundant communications interfaces
- **\***Onboard status LED indications

#### **Functional Description**



 $\checkmark$  All HFC-FPU are FPGA based intelligent I/O modules to perform these functions: sampling of input data and/or transmit to FCPUX or receive output data from the FCPUX and drive output devices.

 $\checkmark$  The two FPGAs on the HFC-FPU I/O modules are the Control FPGA and Diagnostic FPGA. They are intended to work in tandem, processing the same input and/or output data and comparing the results to detect faults.

 $\checkmark$  The dual FPGA structure is designed to protect final output data from Single Event Upset and single component failure that may impact safety function.

✓ The HFC-FPU circuit structure includes multiple layers of safety function protection circuitry/logic to enforce the I/O channel verification and communication data acquisition/verification.

✓The diagnostic FPGA controls the F-Link RS485 transmit enable signal. The diagnostic FPGA also monitors all I/O activities. For any diagnostic non-conformance, the diagnostic FPGA can invalidate the FPU function or mark channel data as questionable



### FPU (FPGA PROCESSOR UNIT) BLOCK DIAGRAM



### **HFC-FCPUX FPGA SYSTEM CONTROLLER**

#### **Product Features**

- FPGA based controller with diagnostics capabilities
- Intelligent module diagnostics and self checking capabilities
- Power on reset circuitry with onboard watchdog timer
- Redundant power feeds with onboard diode auctioneering
- Redundant communications interfaces
- Onboard status LED indications



#### **Functional Description**

- ✓ The HFC-FCPUX is a central control unit designed for use in the HFC-FPGA product line.
- The HFC-FCPUX supports communications with FPGA FPU I/O modules via F-Link, Gateway Controller via G-Link, and its redundant controller via the RIF.
- ✓ The two FPGAs on the HFC-FCPU is partitioned into Control FPGA and Diagnostic FPGA. They are intended to work in tandem, processing the same input to compare and validate output data.
- The dual FPGA structure is designed to protect final output data from Single Event Upset, and single component failure that may impact safety function.
- ✓ The HFC-FCPU circuit structure includes multiple layers of function safety protection circuitry/logic to enforce the DI/DO channel verification and communication data acquisition/verification.



### FCPUX (FPGA CONTROLLER) ARCHITECTURE



### **HFC-FPGA I&C APPLICATION UTILITY – ONESTEP**

#### • USES SIMILAR METHOD OF ENTRY TO HFC-6000 MICROPROCESSOR SYSTEM





### **HFC-FPGA AUTOMATED LOGIC GENERATION**



- APPLICATION IS DEFINED BY THE GENERATION OF A SET OF CAD DRAWINGS
  - PROMISE CURRENTLY SUPPORTED
  - SCHEMATIC TYPE REPRESENTATION OF THE APPLICATION
  - PROCESSING OF THE DRAWING SET CREATES APPLICATION DATA BASE REPORT
- DRAWING SET IS PROCESSED BY ONESTEP
  - ONESTEP IS A NRC QUALIFIED TOOL DEVELOPED BY HFC



### **HFC-FPGA AUTOMATED LOGIC GENERATION**



- INVOKING ONESTEP GENERATES PROGRAMMING FILES THAT CUSTOMIZE THE HFC-6000 FPGA SYSTEM
  - PARSES DRAWING DATABASE
    - DETERMINES THE ORDER OF ANALOG PROCESSING (IF REQUIRED)
    - REQUIRED APPLICATION LOGIC RTL
    - ANALOG PROCESSING (CQ4) REQUIREMENTS
    - F-LINK FILTERING
    - MEMORY INITIALIZATION
  - INVOKES LIBERO (MICROSEMI FPGA SOC TOOL) TO GENERATE FPGA PROGRAMMING FILES USING THE FOLLOWING INPUTS
    - PUBLISHED PLATFORM BLOCKS
    - APPLICATION LOGIC RTL
    - BUILD SCRIPTS GENERATE PROGRAMMING FILES FOR THE DIAGNOSTIC AND CONTROL FPGA'S
  - HFC BUILDFLASH TOOL GENERATES BINARY FLASH PROGRAMMING FILE



### **HFC-FPGA AUTOMATED LOGIC GENERATION**



- FLASH PRO (MICROSEMI TOOL)
  - USES ONESTEP GENERATED FPGA PROGRAMMING FILES TO CONFIGURE THE FCPUX CONTROL AND DIAGNOSTIC FPGA'S
- QSFLASH
  - HFC UTILITY USED TO PROGRAM CONTROL AND DIAGNOSTIC SPI FLASH WITH A PC USB PORT
    - REQUIRES THE HFC 40134221Q SPI FLASH PROGRAMMER



### **FPGA DESIGN PROCESS**



#### ✓ DESIGN PHASE INPUT

- ✓ APPROVED SW REQUIREMENT SPECIFICATION
- ✓ DESIGN ACTIVITIES
  - ✓ PARTITIONING AND DETAILED DESIGN
  - ✓ OUTPUT APPROVED DESIGN SPECIFICATION
- ✓ IMPLEMENTATION PHASE INPUT
  - ✓ APPROVED DESIGN SPECIFICATION
- ✓ IMPLEMENTATION ACTIVITIES
  - ✓ CODING, SYNTHESIS, PLACE AND ROUTE
  - ✓ FORMAL VERIFICATION VALIDATE SYNTHESIS, P&R
  - ✓ OUTPUT VALIDATED P&R NETLIST, PROGRAMMING FILES
- ✓ TEST PHASE INPUT
  - ✓ PROGRAMMING FILE GENERATED FROM IMPLEMENTATION
- ✓ TEST ACTIVITIES
  - ✓ DEVICE VALIDATION
  - ✓ FUNCTIONAL VERIFICATION



### **HFC-FPGA PRODUCT SUMMARY**

#### • HFC-FPGA IS AN EVOLUTION OF THE HFC-6000 PRODUCT THAT REMOVES MICROPROCESSOR CONTROL ELEMENTS

- SHARES IMPORTANT AND NECESSARY QUALITIES OF THE HFC-6000 SYSTEM
  - BUILDS ON THIS PLATFORM BY ADDING DETERMINISTIC STATE MACHINE PROCESSING AND REDUNDANCY
- REPLACE ICL PROTOCOL (MASTER/SLAVE) WITH A TOKEN PASSING PROTOCOL CALLED F-LINK
- CONTROL FPGA MAIN CONTROL ELEMENT
- DIAGNOSTIC FPGA VERIFIES ACTIVITY AND PROCESSING RESULTS OF THE CONTROL FPGA
- SHARES HFC-6000 TOOLS FOR DEVELOPING APPLICATIONS
- IMPLEMENTS REDUNDANCY OVER A SEPARATE REDUNDANCY INTERFACE
- TWO SYSTEM CONFIGURATION OPTIONS DISTRIBUTED AND CENTRALIZED
  - DISTRIBUTED, I/O FPU RUN A PORTION OF THE APPLICATION
  - CENTRALIZED, FCPUX RUNS APPLICATION WITH INPUT AND OUTPUT PROVIDED BY THE FPU
- CONTROL APPLICATION STORAGE
  - FPGA CONFIGURATION AND REDUNDANT NON-VOLATILE MEMORY ELEMENTS
  - FPGA'S VALIDATE APPLICATION AT POWERUP USING INTRA-FPGA BUS





# THANK YOU

