

U.S. NRC Reviews of FPGAbased Systems

Rossnyev Alvarado

U.S. Nuclear Regulatory Commission December 6, 2017

Digital I&C Platforms Approved

- GE NUMAC System
 - September 1995
- Areva Teleperm XS (microprocessor-based)
 - May 2000
- Doosan HF-6000 (microprocessor-based)
 - May 2011
- Schneider-Electric Triconex (microprocessorbased)
 - April 2012 (originally evaluated December 2001)

Digital I&C Platforms Approved

- Westinghouse Common Q (microprocessorbased)
 - February 2013 (originally evaluated in 2000-2001)
- Westinghouse ALS platform (FPGA-based)
 - September 2013
- Rolls Royce SPINLINE 3 platform
 - November 2014
- Lockheed Martin NuPAC
 - March 2017
- NuScale HIPS platform (FPGA-based)
 - June 2017

Digital I&C Platforms Under Review

- Toshiba power range monitoring (PRM) system (FPGA-based)
- Mitsubishi MELCO (FPGA for peripheral modules)
- Radiy RadICS (FPGA-based)
- HFC-6000 Amendment (FPGA-based)

Examples of Digital Upgrades

- Duke Oconee Reactor Protection System & Engineered Safety Features Actuation System Upgrade
- Wolf Creek Simple Safety Actuation Function
- Diablo Canyon Plant Protection System and Engineered Safety Features Actuation
- Others (e.g., Watts Bar Common Q Post Accident Monitoring System)

Technical Challenges

- Evaluation of potential software design errors, which could impact system operability and reliability, make analysis of digital systems challenging and impact their regulatory treatment
- Introduction of (relatively) new technology, which makes difficult to keep guidance up to date
- Protection against digital system vulnerabilities and possible adverse interactions (either malicious or non-malicious) [this is under the scope of NSIR review]

DI&C Action Plan

- Integrated Action Plan for Improving the Regulatory Infrastructure of Digital I&C, described in SECY-15-0106
- SRM-SECY-16-0070 approved the implementation of the IAP
- The IAP will ensure safety and security while improving the predictability and consistency of the agency's regulatory process for licensing and oversight of digital I&C systems

10 CFR 50.59

Software CCF

Commercial
Grade
Dedication

Licensing Process

IAP – Software Common Cause Failure

- RIS supplement provides near-term clarification for digital upgrades
- Evaluating NEI's proposed guidance in NEI 16-16
- Evaluate existing policy on software common cause failure

How Software Common Cause Failure is Currently Addressed

- Regulation is technology neutral
- SRM-SECY-93-087 defines criteria for addressing software common cause failure
 - BTP 7-19: guidance for implementation
 - NUREG/CR-6303: guidance for performing diversity and defense-in-depth analysis
 - NUREG/CR-6707: guidance for diversity
- Consider adequate degree and nature of diversity applied to nuclear power plant safety systems

Software Common Cause Failure

Can certain technology base be used to address CCF?

Diversity in FPGAbased Platforms

Evaluation was limited to specific manufacturer claims regarding the built-in diversity

- Westinghouse ALS
 - Can use built-in diversity (i.e., platform design attributes)
- Rolls Royce SPINLINE 3
 - Not used
- Lockheed Martin NuPAC
 - Not addressed at this level
- Approved Doosan HFC-6000 Safety System
 - Can use two safety system design: separate transmission of measurements and separate implementation of actuation output

Diversity in FPGA-based Applications

- Wolf Creek Main Steam and Feedwater Isolation System
 - 1st FPGA-based application
 - ALS platform, using diverse cores
- Diablo Canyon RPS
 - ALS platform, using built-in diversity
- NuScale small modular reactor
 - NuScale HIPS
 - Equipment (architecture) and design diversity

Acronyms

- ALS Advanced logic system
- ASIC Application specific integrated circuits
- CPLD Complex programmable logic device
- CPU Central processing unit
- FPGA Field programmable gate arrays
- HIPS Highly integrated protection system
- IAP Integrated action plan
- I&C Instrumentation and control
- NSIR Office of Nuclear Security and Incident Response
- NuPAC Nuclear protection and control
- RIS Regulatory issue summary