

NPP CCS FPGA Controller Architecture

HOT STANDBY ARCHITECTURE WITH MESSAGE BASED REDUNDANCY 12/5/17

Innovation Leadership Service

© Copyright by DOOSAN HF Controls Corp. 2015 All Rights Reserved.

Table of Contents

- INTRODUCTION
 - ✓ MYSELF
 - ✓ HF CONTROLS
 - ✓ HFC-6000 FPGA USAGE
- HFC-6000 FPGA CCS VS DPS
 - ✓ DEFINITION OF TERMS
 - ✓ REDUNDANCY IMPLEMENTATIONS
- HFC-6000 FPGA CCS HOT STANDBY
 - ✓ MESSAGING OBJECTIVES
 - ✓ MESSAGE TYPES
 - ✓ MESSAGE FLOWS

MYSELF

- FPGA DEVELOPMENT MANAGER AT HFC FOR THE LAST TWO YEARS
 - BEEN WITH THE COMPANY FOR APPROXIMATELY 3 YEARS
 - ELECTRICAL ENGINEERING DEGREE WORKING IN THE INDUSTRY FOR > 30 YEARS
- RESIDED IN NORTH TEXAS FOR LAST 32 YEARS
 - NATIVE TEXAN?
- BACK GROUND IS TELECOM HIGH AVAILABILITY HARDWARE
 - PCB, FPGA, RTL, AND TEST

HFC INTRODUCTION

Overview

- Address : 1624, West Crosby Carrollton, TX 75006, USA
- Toll Free: 1-866-501-9954
- Fax: 469-568-6589
- Web <u>www.HFControls.com</u>

Business Line

- Designing and manufacturing Nuclear Power Plant safety class 1E/ non-class 1E control systems
- Designing and manufacturing plant control system and boiler management system for fossil power plant
- Commercial digital control systems for several industries including water treatment, petrochemical, etc.

Accomplishments

- Over 450+ plant control system installations worldwide
 - Thousands of digital controllers and I/Os installed in nuclear power plant
 - Field proven plant control I&C product lines including both nuclear and non-nuclear applications

HFC ACCOMPLISHMENTS

HFC-6000 FPGA USAGE

- FPGA'S ARE USED TO IMPLEMENT FSM BASED APPLICATION CONTROL ALGORMITMS
- ROBUST CONTROL ARCHITECTURE ALL CONTROLLER AND I/O CARDS ARE ARCHITECTED WITH TWO FPGA'S
 - CONTROL FPGA PERFORMS I/O AND/OR CONTROL PROCESSING
 - MONITORS HEALTH OF DIAGNOSTIC FPGA
 - DIAGNOSTIC FPGA MONITORS CONTROL FPGA BY VERIFYING THE CONTROL FPGA PROCESSING OUTPUT
 - MONITORS HEALTH OF THE CONTROL FPGA
- FPGA'S ALLOW RAPID CUSTOMIZATION OF CONTROL ALGORITHMS
- THREE PARTS TO THE DEVELOPMENT OF CCS APPLICATION GENERATED BY HFC SOFTWARE TOOL FLOW
 - PROCESSING ENGINE
 - CUSTOM CALCULATION BLOCK GENERATED BY HFC FOR ANALOG CALCULATION
 - CUSTOMER DEFINED APPLICATION ADDED TO PROCESSING ENGINE
 - APPLICATION DESCRIBED IN SCHEMATIC TYPE DRAWINGS
 - COMPILED WITH SOFTWARE TOOLS
 - AUTOMATIC RTL GENERATION ADDED TO PROCESSING ENGINE FOR FINAL PROGRAMMING FILE GENERATION
 - ALGORITHM CONTROL CONFIGURATION BINARY
 - ANALOG CALCULATION CONTROL SEQUENCE STORED OFF FPGA
 - LOADED AT POWER UP FROM EXTERNAL FLASH MEMORY
 - ALL PARTS ARE IDENTIFIED BY UNIQUE NUMBER ASSIGNED BY THE SOFTWARE FLOW
 - PROTECTED BY CRC'S AND CHECKED FOR ACCURACY BETWEEN THE DIAGNOSTIC AND CONTROL FPGA'S

HFC-6000 CCS VS DCS

- HFC HAS DEVELOPED TWO TYPES OF NUCLEAR POWER PLANT CONTROLLERS USING FPGA BASED CARDS
 - CENTRALIZED CONTROL SYSTEM (CCS)
 - LOOP CONTROL APPLICATION IS CENTRALIZED ON A REDUNDANT PAIR OF CONTROLLER CARDS
 - COMMUNICATION OCCURS BETWEEN CONTROLLERS OVER A PRIVATE REDUNDACY INTERFACE
 - I/O CARDS AND CONTROLLERS COMMUNICATE OVER A RS-485 BUS
 - I/O CARDS SEND/RECEIVE POINT STATUS TO/FROM THE CONTROLLERS

- DISTRIBUTED CONTROL SYSTEM (DCS)
 - I/O CARDS BECOME THE CONTROLLER CARDS AND PROCESS LOOP CONTROL APPLICATION LOCALLY
 - LOOP CONTROL APPLICATION IS DIVIDED BETWEEN THE I/O CARDS
 - I/O CARDS COMMUNICATE WITH EACH OTHER OVER A RS-485 BUS
 - REDUNDANCY IS ACHIEVED THROUGH ARCHITECTURAL FUNCTION DUPLICATION AND VOTING

HFC-6000 CCS REDUNDANCY

• PARALLEL REDUNDANCY – HFC EXPERIENCE

- IMPLEMENTATIONS IN MICROPROCESSOR AND FPGA BASED CARDS
- BOTH CONTROLLERS ARE PROCESSING THE SAME APPLICATION AT THE SAME TIME
 - REQUIRES EQUALIZATION OF APPLICATION DATA BETWEEN CONTROLLERS
- CHARACTERISTICS
 - NOT AS COMPLEX AS OTHER SCHEMES
 - BOTH CONTROLLERS ARE BEING FULLY TESTED 100% OF THE TIME
 - I/O CARDS HAVE TWO SETS OF DATA TO CHOOSE FROM
 - FAILSAFE REQUIRED TO GUARANTEE I/O CARDS USE DATA FROM A HEALTHY CONTROLLER
 - CONTROLLERS HAVE TO SELF DIAGNOSE ISSUES
 - I/O CARDS USE PRIORITIZATION CONTROLLER A OVER CONTROLLER B
 - EQUALIZATION CAN BE COMPLEX AND TAKES TIME
 - BUMPLESS CONTROL
 - SUPPORTS MIGRATION TO HOT STANDBY CONTROLLER ARCHITECTURE

NPP CCS REDUNDANCY

• HOT STANDBY REDUNDANCY

- HFC HAS IMPLEMENTATIONS IN MICROPROCESSOR AND FPGA BASED CARDS
- INTRODUCES AN ACTIVITY CONTROL ELEMENT BETWEEN THE TWO CONTROLLERS
 - DETERMINES WHICH CONTROLLER IS ACTIVE AND WHICH IS HOT STANDBY
 - ACTIVE CONTROLLER PROCESSES THE APPLICATION
 - HOT STANDBY CONTROLLER RECEIVES APPLICATION EQUALIZATION DATA
 - SUPPORTS STATUS AND EQUALIZATION MESSAGING BETWEEN ACTIVE AND HOT STANDBY CONTROLLERS
 - EQUALIZATION BETWEEN THE CONTROLLERS IS REQUIRED TO ALLOW BUMPLESS CONTROL
 - PERFORMS AUTOMATIC FAILOVER FUNCTION
 - VERIFIES HEALTH OF THE ACTIVE CONTROLLER CARD
 - IF ACTIVE CARD FAILS, REMOVES ACTIVE ENABLE AND ENABLES HOT STANDBY CONTROLLER AS ACTIVE
 - PARTICIPATES IN MANUAL FAILOVER PROCESS
- CHARACTERISTICS
 - I/O CARDS HAVE ONE SET OF DATA TO CHOOSE FROM
 - CENTRAL CONTROL ENTITY THAT VERIFIES CONTROLLER CARD FUNCTION
 - CONTROLS WHICH CONTROLLER IS ACTIVE WITH ACTIVITY (ACT) SIGNAL
 - MORE COMPLEX SYSTEM WITH SINGLE ELEMENT BETWEEN CONTROLLERS

CCS HOT STANDBY ARCHITECTURE OBJECTIVES

- SUPPORT NON REDUNDANT CONFIGURATIONS NO ACTIVITY CONTROL
- USE HIGH SPEED SERIAL REDUNDANCY INTERFACE BETWEEN THE CONTROLLERS FOR COMMUNICATION
- FAILURE DETECTION OF ACTIVE CONTROLLER AND SWITCH TO HOT STANDBY
- CONTROLLERS COMMUNICATE HEALTH AND LAST RECEIVED STATUS INFORMATION REGULARLY
- ACTIVITY CONTROL ELEMENT RESPONDS TO CONTROLLER STATUS WITH SYSTEM STATUS
- CONTROLLERS CAPTURE STATE OF ACTIVITY CONTROL SIGNAL WHEN VALID SYSTEM STATUS RECEIVED
- ACTIVITY CONTROL ELEMENT SUPPORTS EQUALIZATION ACTIVE TO HOT STANDBY
- ACTIVITY CONTROL ELEMENT SUPPORTS MAINTENANCE MODE FOR FIELD SERVICE
- CONTROLLERS SUPPORT MANUAL FAILOVER REQUEST
- SUPPORT DYNAMIC SYSTEM CHANGES

CCS HOT STANDBY MESSAGE TYPES

• CONTROLLER MESSAGE TYPES

- INIT COMPLETE CONTROLLER HAS COMPLETED INITIALIZATION TESTS AND ITS STATUS
- CNTR STATUS CONTROLLER STATUS UPDATE
- EQU UPDATE EQUALIZATION UPDATE FROM ACTIVE CONTROLLER
- EQU TRANSMIT HOT STANDBY REQUEST FOR ACTIVE CONTROL ELEMENT TO SEND NEW EQUALIZATION DATA
- EQU ACK HOT STANDBY ACKNOWLEDGES RECEPTION AND USAGE OF EQUALIZATION DATA
- MAINT MODE ACK MAINTENANCE MODE ACKNOWLEDGE FROM THE CONTROLLER
- ACTIVITY CONTROL ELEMENT MESSAGE TYPES
 - SYSTEM READY INIT COMPLETE ACK FROM THE ACTIVITY CONTROL ELEMENT
 - SYSTEM STATUS SYSTEM STATUS UPDATE
 - SYSTEM ERROR GENERATED FOR AUTOMATIC FAILOVER UPON ERROR DETECTION
 - MAINT MODE INIT MAINTENANCE MODE INITIATED FROM THE ACTIVITY CONTROL ELEMENT

ACTIVITY CONTROL SYSTEM STATES

• POWERUP

- CONTROLLERS BROADCAST "INIT COMPLETE" MESSAGE WITH HEALTH STATUS
- AFTER RECEPTION OF THE "SYSTEM READY" RESPONSE FROM THE ACTIVITY CONTROL ELEMENT
 - CONTROLLER STORES THE STATE OF THE ACT AND ENTERS NORMAL OPERATION MODE
- NON REDUNDANT MODE NO MESSAGING REQUIRED
 - SELECTABLE OPTION FOR CONTROLLER CARD
 - ACTIVITY CONTROL ELEMENT MESSAGING IS NOT ACTIVATED AND NOT REQUIRED TO BE INSTALLED
 - CONTROLLER ASSUMES ACTIVE CONTROLLER STATUS
 - SENDS APPROPRIATE SYSTEM CONFIGURATION INFORMATION TO OPERATOR POSITION

• NORMAL OPERATION MODE

- ACTIVE CONTROLLER TWO CASES FOR THE ACTIVE CONTROLLER
 - MATE PRESENT INFORMATION EXCHANGED THROUGH STATUS AND ERROR MESSASES AS DESCRIBED
 - "SYSTEM STATUS" MESSAGE FROM ACTIVITY CONTROL ELEMENT INDICATES MATE STATUS
 - » NO COMMUNICATION FROM MATE INDICATES DEGRADED STATUS ALARM
 - APPLICATION COMPATIBILITY INFORMATION MUST BE CURRENT AND MATCH TO START EQUALIZATION
 - » STALE APPLICATION IDENTIFIER DATA IS SET TO DEFAULT TO IDENTIFY UNITIALIZED STATE
 - » MUST MATCH UNIQUE NUMBER ASSIGNED AT APPLICATION COMPILE TIME
 - » NO MATCH IS DEGRADED MODE
 - EQUALIZATION ENABLED
 - » REGULARLY SEND APPLICATION DATA STATUS TO THE HOT STANDBY CONTROLLER
 - » SET TIMER FOR ACKNOWLEDGE RECEPTION TIMER EXPIRES BEFORE ACK RECEIVED, SETS ALARM
 - NO MATE PRESENT
 - CONTINUALLY CHECK FOR HOT STANDBY MATE TO BE INSTALLED
 - DEGRADED MODE
- HOT STANDBY CONTROLLER
 - RECEIVES NOTIFICATION IN "SYSTEM STATUS" OF EQUALIZATION UPDATE STATUS
 - REQUESTS TRANSMISSION USING "CONTROLLER STATUS" MESSAGE AND STARTS RESPONSE TIMER
 - RECEIVES TIMELY RESPONSE, CHECKS DATA INTEGRITY, USES DATA TO UPDATE APPLIATION STATUS
 - DOES NOT RECEIVE TIMELY RESPONSE, GENERATES ALARMS SENT IN SYSTEM STATUS UPDATE

• AUTOMATIC FAILOVER

- ACTIVE CONTROLLER FAILURE HAS BEEN DETECTED BY THE ACTIVITY CONTROL ELEMENT
 - FAILURE IN MESSAGING FREQUENCY (STATUS, EQUALIZATION) OR REPORTED ERROR CONDITION
 - CONTROLLER IS REPORTING INTERNAL ERROR CONDITION OR OTHER ADVERSE HEALTH CONDITION
 - ACTIVITY ELEMENT SWITCHES ACTIVITY CONTROL AND UPDATES SYSTEM STATUS DATA
 - OUTPUTS "SYSTEM ERROR" STATUS MESSAGE TO BOTH CONTROLLERS
 - » CONTAINS ERROR CODE DETECTED FOR AUTOMATIC FAILOVER
 - » NEW ACTIVE CONTROLLER UPDATES STATUS FLAGS REPORTED TO OPERATOR POSITIONS

• MANUAL FAILOVER

- INITIATED BY SWITCH ON THE FRONT BEZEL
 - ACTIVE CONTROLLER SENDS "CONTROLLER STATUS" MESSAGE WITH INDICATOR FOR FAILOVER REQUEST
 - ACTIVITY ELEMENT SENDS "SYSTEM STATUS" WITH FAILOVER REQUEST TO CURRENT HOT STANDBY CONTROLLER
 - HOT STANDBY CONTROLLER SENDS FAILOVER ACKNOWLEDGE STATUS IN "CONTROLLER STATUS"
 - SUCCESS READY TO INITIATE FAILOVER
 - FAULT ISSUE WITH BECOMING ACTIVE CONTROLLER
 - ACTIVE CONTROLLER UPDATES FAILOVER COMPLETION STATUS IN "CONTROLLER STATUS"
 - SUCCESS FAILOVER COMPLETE
 - FAULT ACKNOWLEDGE FAILURE TO MANUAL FAILOVER AND MAINTAIN ACTIVE CONTROLLER STATUS
 - » REPORT ERROR TO OPERATOR POSITION

• SYSTEM CHANGE

- CONTROLLER ADDITION CONTROLLER INSERTION DETECTED
 - NO ACTIVE CONTROLLER WAIT FOR RECEPTION OF "INIT COMPLETE" MESSAGE
 - ONE ACTIVE CONTROLLER AFTER RECEPTION OF "INIT COMPLETE" MESSAGE
 - ASSIGN HOT STANDBY STATUS AND ENABLE EQUALIZATION IF APPLICATION PARAMETERS MATCH
- CONTROLLER REMOVAL CONTROLLER REMOVAL DETECTED, NORMAL AND ERROR CONDITION
 - HOT STANDBY CONTROL REMOVED "SYSTEM STATUS" UPDATED WITH CONTROLLER
 - ACTIVE CONTROLLER REMOVED NO MANUAL FAILOVER, ERROR CONDITION
 - IMMEDIATE SWITCH OF ACTIVITY CONTROL TO HOT STANDBY CONTROLLER
 - UPDATE OF "SYSTEM STATUS" TO SHOW ERROR INDICATOR IN FOLLOWING MAINTENANCE PROCEDURE
 - ERROR CONDITION REPORTED BY NOW ACTIVE CONTROLLER IN SYSTEM FLAGS
- SYSTEM APPLICATION UPDATE

HF Controls

DAASAA

- HOT STANDBY CARD REMOVED FROM THE SYSTEM
 - REMOVAL OF CONTROLLER DETECTED BY ACTIVITY CONTROL ELEMENT
 - » "SYSTEM STATUS" CHANGED TO REFLECT REMOVAL ACTION AND EQUALIZATION DISABLED
- MANUAL FAILOVER INITIATED ON THE ACTIVE CONTROLLER TO MAKE SECONDARY
 - UPDATE TO THE SAME APPLICATION REVISION AS THE CURRENT ACTIVE CONTROLLER
 - RE-INSERT IN THE CHASSIS AND NOTE RESTORATION OF EQUALIZATION
 - "SYSTEM STATUS" MESSAGE NOTES NORMAL OPERATION OR INDICATES FAULT CONDITIONS

• MAINTENANCE MODE

- INITIATED VIA SWITCH SETTING ON THE ACTIVITY CONTROL ELEMENT
- ACTIVITY CONTROL ELEMENT SENDS "MAINT MODE INIT" MESSAGE
 - TO ALL CONTROLLERS PRESENT WITH REGULAR STATUS
- CONTROLLERS RECEIVE "MAINT MODE INIT" MESSAGE AND STORE STATE OF ACT SIGNAL
 - ENTER ACTIVITY HOLDOVER MODE INDICATED ON FRONT BEZEL
 - CONTROLLERS ACKNOWLEDGE ACTIVITY HOLDOVER MODE COMPLETE WITH "MAINT MODE ACK" MESSAGE
- WHEN ACTIVITY CONTROL ELEMENT RECEIVES "MAINT MODE ACK" CONTROLLERS WITH REGULAR STATUS
 - MAINTENANCE MODE

• TEST MODES

- LAB USE ONLY, NOT ACTIVE FOR NORMAL OPERATION

THANK YOU FOR YOUR ATTENTION AND COMMENT

