

Doosan Heavy Industries & Construction

Doosan Practice of V&V and Testing in FPGA Development Process

Oct 16, 2015 Shanghai, China

1. Introduction

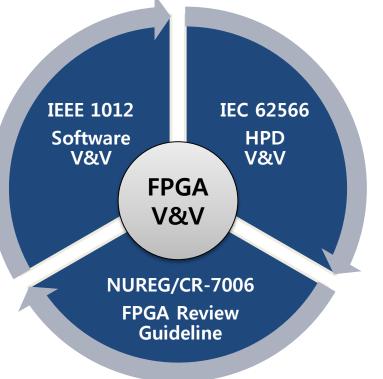
- . V&V in FPGA Development Process
 - : NUREG/CR-7006, IEC62566

2. V&V and Testing

- . Document Evaluation and Static Verification
- . Component Test
- . Integration Test
- . System Test

1. Introduction

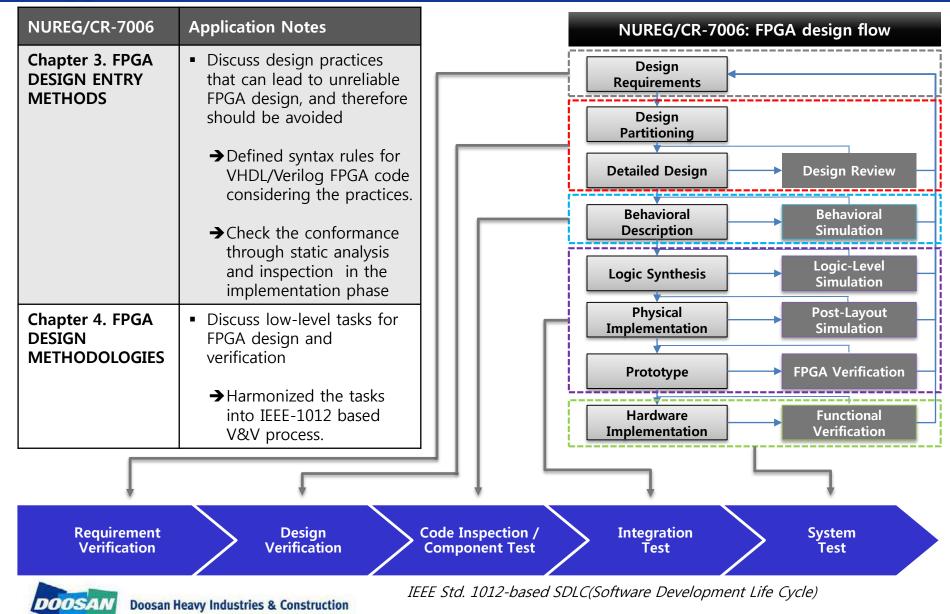
- . V&V in FPGA Development Process
 - : NUREG/CR-7006, IEC62566
- 2. V&V and Testing
- . Document Evaluation and Static Verification
- . Component Test
- . Integration Test
- . System Test



I. Introduction 1-1. V&V in FPGA Development Process

> FPGA has mixed characteristics of hardware and software

> FPGA V&V is hard to be achieved with IEEE Std. 1012 (a basis for NPP software V&V)


- [NUREG/CR-7006] IEEE-1002-2004 is a software-only standard, and it can not be directly applied to V&V process for FPGA-based systems. Even though the top level V&V processes and underlying activities are generic and can be used for FPGAs, the low level tasks are software specific, and not directly applicable to FPGAs.
- → Harmonized existing FGPA standards and technologies into IEEE Std. 1012-based SDLC (Software Development Life Cycle)
 - **IEEE Std. 1012 :** Standard for Software Verification and Validation
 - NUREG/CR-6007 : Review Guidelines for Field-Programmable Gate Arrays in Nuclear Power Plant Safety Systems
 - IEC 62566 Nuclear power plants Instrumentation and control important to safety – Development of HDL-programmed integrated circuits for systems performing category A functions

I. Introduction

1-2. Application of NUREG/CR-7006 Review Guidelines for FPGA in NPPS

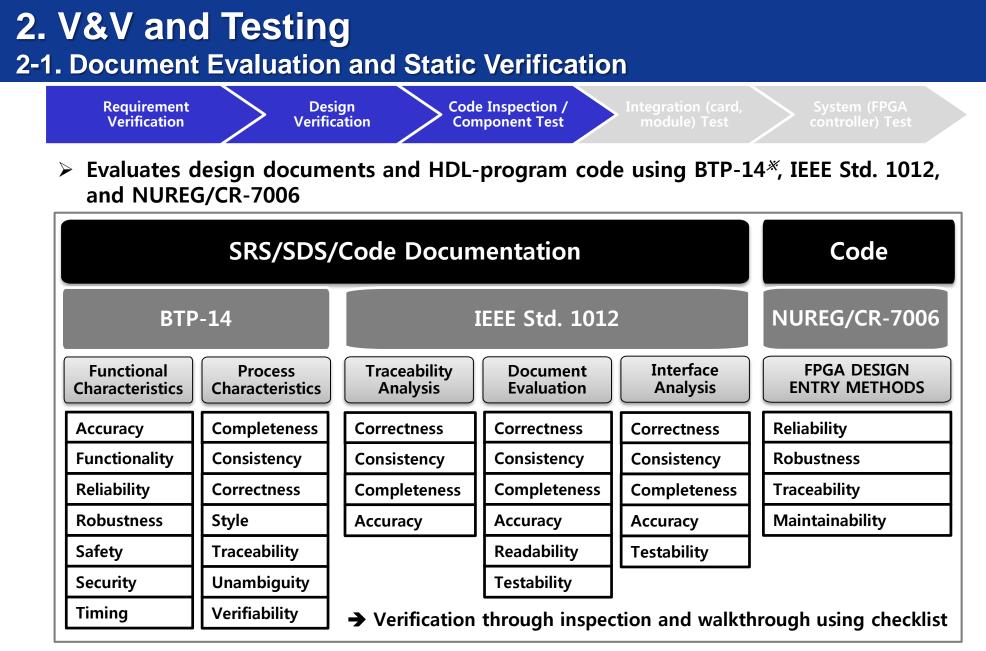
I. Introduction 1-3. Application of IEC 62566 : HPD% Verification

Application Notes	IEC 62566 : Dev
 Independent V&V team 	HPD requirement
 Software V&V plan in the concept phase 	specification Verification
 Original software 	
 SRS, SDD document evaluation 	HPD design specification
 Test-benches to fulfil requirement and path coverage 	Verificatio
 Path/Branch coverage for Component Test Requirement coverage for Integration Test 	
 Behavioral simulation using test benches Timing simulation 	
 NUREG/CR-7006 based type and syntax checking 	
Design Verification	
	 Independent V&V team Software V&V plan in the concept phase Original software SRS, SDD document evaluation Test-benches to fulfil requirement and path coverage for Component Test Path/Branch coverage for Integration Test Behavioral simulation using test benches Timing simulation NUREG/CR-7006 based type and syntax checking

Doosan Heavy Industries & Construction

DOOSAN

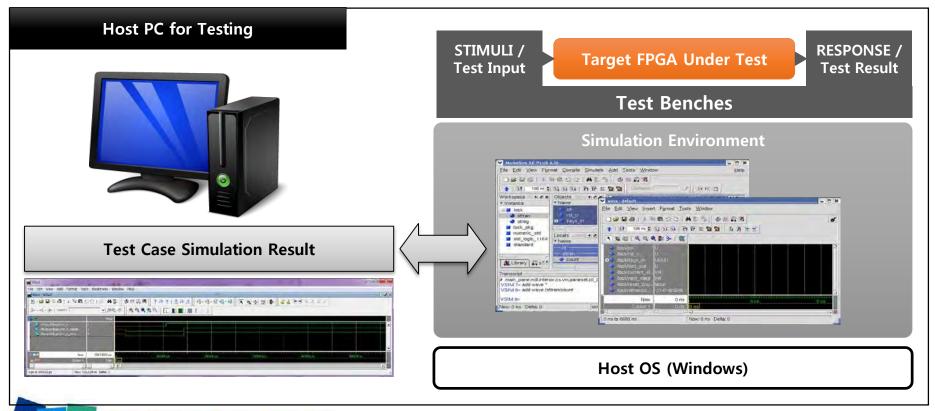
※ HPD : HDL-Programmed Device


1. Introduction

- . V&V in FPGA Development Process
 - : NUREG/CR-7006, IEC62566

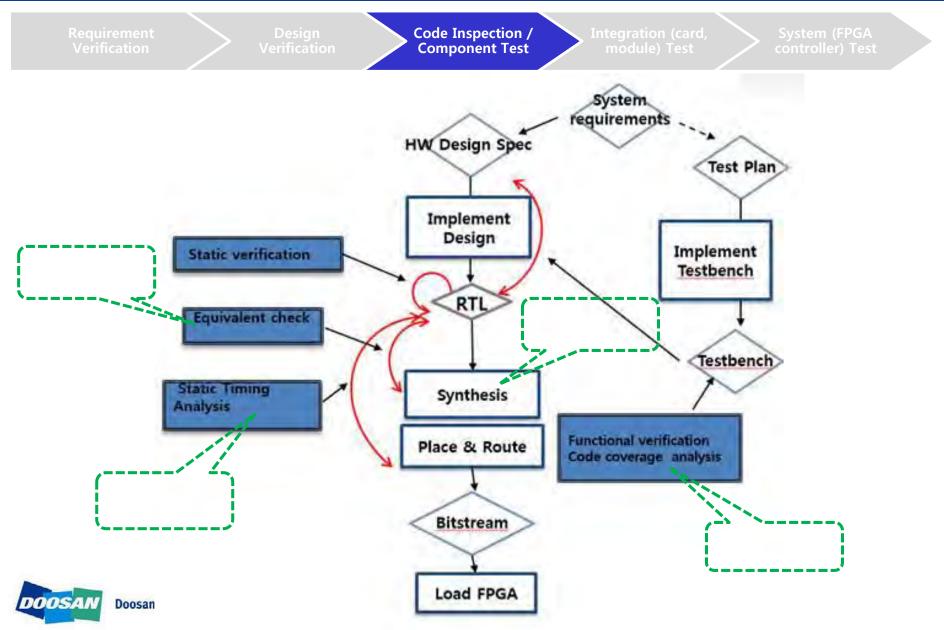
2. V&V and Testing

- . Document Evaluation and Static Verification: V&V
- . Component Test
- . Integration Test
- . System Test

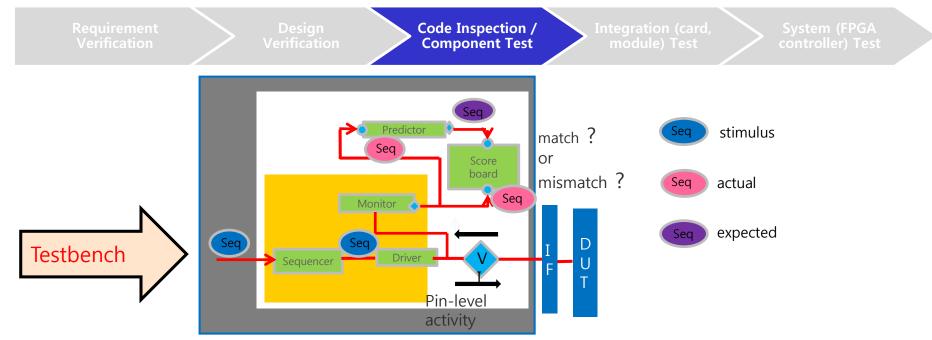

DOOSAN

X USNRC-0800 Standard Review Plan: Chapter 7. Instrumentation and Controls BTP-14

Doosan Heavy Industries & Construction


2. V&V and Testing:Micro-semi(Libero) 2-2. Component Test Requirement Verification Design Verification Question Code Inspection / Integration (card, module) Test

- > Behavior/timing simulation was performed on RTL/HDL code
- > Test criteria : Path coverage, Requirement coverage
- Test environment : Host PC-based Simulation Environment



OOSAN

2. V&V and Testing 2-2. Component Test

2. V&V and Testing 2-2. Component Test

• The Result of Functional Test

\bullet	The	Result	of	Code	Coverage	Analysis
-----------	-----	--------	----	------	----------	----------

93.7%

50.0% 95.1%

80.4%

Stnt count Strits hit Strits Strit % Strit graph Branch Branch B

1 97.89

1 80%

0 100% 0 100%

0 100%

5 0 100% 5 0 100%

5 0 100%

5 0 100% 5 5 0 100% 12 12

108 107

108 107

12 12 12 12

12 12

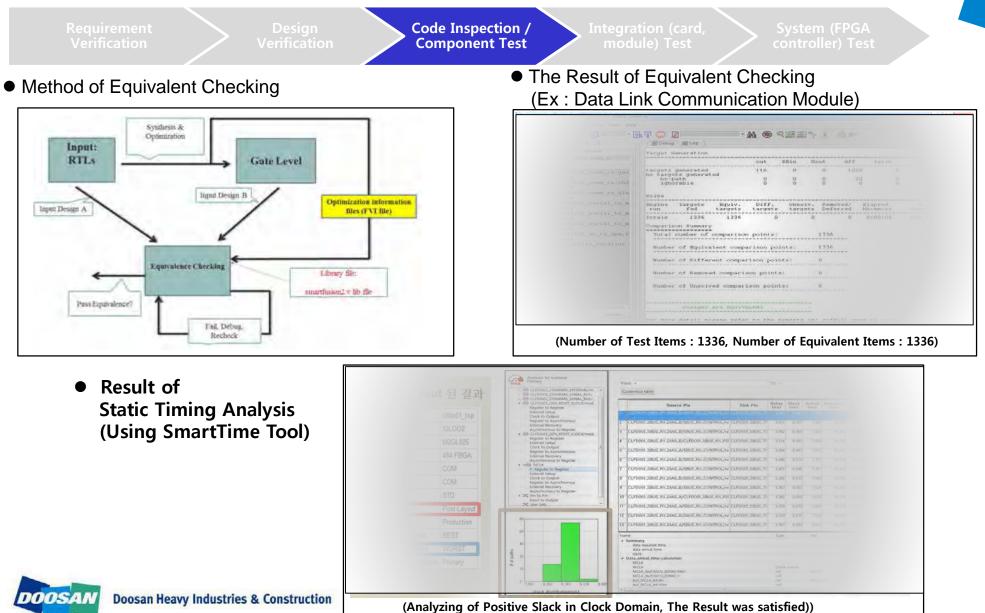
12 12 12 12

12 12

12 11 12 12

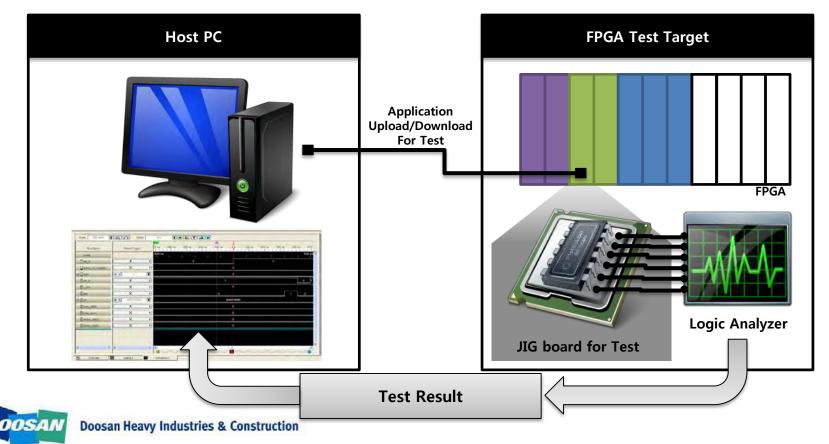
63 62 1 98.4%

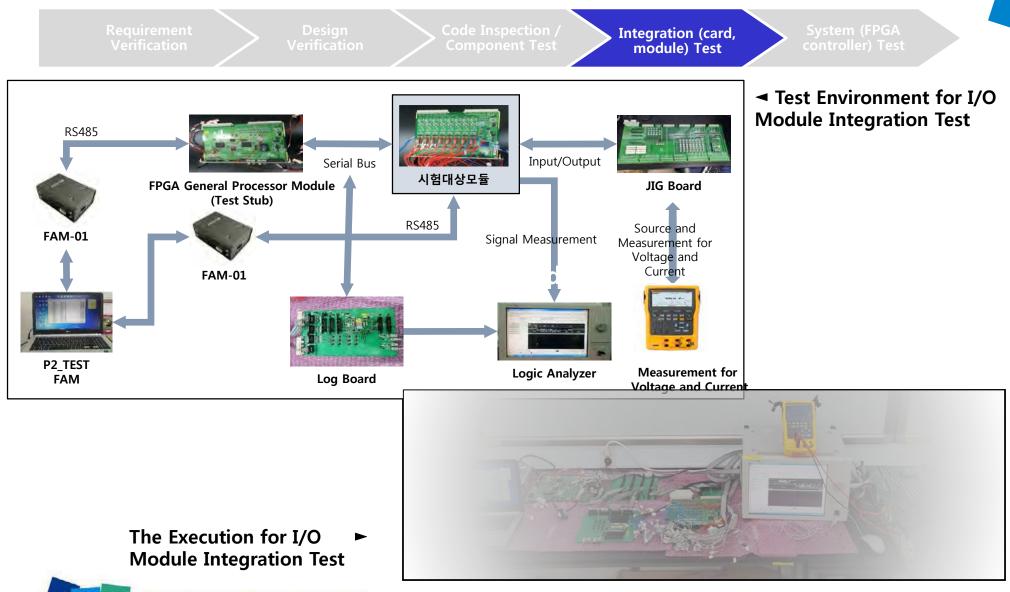
45 44


fotal coverage

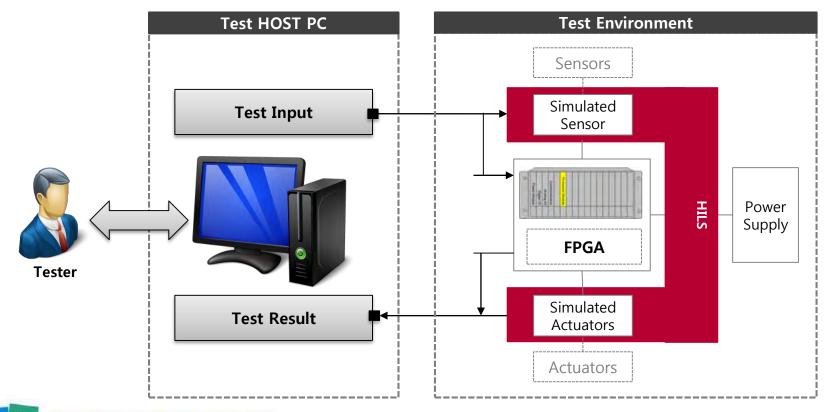
>1	SIGNAL	11	status	11	value		expt	11	p/op		SWR		
>1	reset	11	input	11	1	11	n/e	11	n/a	11	15	1.	
>1	SEL_SHUS	11	Input	11	1	1.1	ts/e	11	n/a	1.1	2.5		
>1	SLOT_POS	11	inpur	11	0	11	n/e	11	n/a	11	15	1	
>1	SRXD	1.1	input	11	1111	11.	T1/8	28.	n/e	1.1	2.5	1.12	
>1	id_module	11	input	1.1	4601	11	n/#	1.1	n/a	13	15	1	
>1	seel_this	1.1	output		0	01.6	0		Pass	11	15	1.	
21	err sel bus	11	output	3.1	0	1.1	0	8.8	Pass	11	3.5	1.12	
>1	err_proc	11	output	4.4	0	11	0	1.1	Pazz	11	15	12	
>1	err_Hrx	1.1	output	1.1	0	1.1	0	11	Page	11	25	1	
>1	err_tx_scan	1.1	output	1.1	0	1.1.	0	4.2	Pans	1.1	1.5	1	
>1	norm_op	1.1	output	1.1	0	11	0	1.1	Pass	1.1	15	1.1	
21	clr_erret	1.1	output	11	0	08.40	0	11	Pass	11	15	1	
>1	en and set	11	output	11	0	11	0	1.1	Pazz	11	15	1	
>1	set_scan_time	3.3	output	11	fffe	11	fffe	1.6	Pass	. 4 3	15	T.	
>1	set_en_tx_diag	11	output	11.	0	1.1	0	11	Pass	1.1	3.5		
>1	set_en_tx_ch	11	output	11	0	11.	Ø	1.1	Pass	1.8	15	1.	
>1	set_en_rx_diag	11	output	2.2	0	11	0	1.4	Pass	11	15	1	
>1	set_en_rx_ch	11	output	1.1	0	11	0	1.1	Pass	11	25	1	
>1	set_tx_sadr0-3	11	eutput	11	ffff	11	tttt	1.4	Pass	1.1	15	1	
>1	set tx madr0-3	TT.	output	11	2222		2222	4.15	Pass	11	15	E.	
>1	set_tx_dlen0-3	1.1	output	11	00	11	00	1.1	Pass	11	25	12	
>1	set_rx_scant0+3	1.1	output	1.1	itte	11	fffe	11	Pass	11	15	10	
>1	set_ix_sadr0-3	11	output	11	ette	11	2222	14	Pess	11	\$5	E	
>1	set_rs_medr0-3	11	nutput	11	1111	11	EFFE	1.1	Pass	1.1	15	1	
>1	set_rx_dlen0-3	11	output	3.8	ea	11	80	1.1	Fezz	1.1	\$5	- F	
>1	sta_op_dount	11	output	3.1	0	11	0	1.1	Pass	1.1	15	- E	
>1	drdy_ts_dpm	1.5	output	3.1	0	11	0	4.4.	Pozz	4.1	2.5	1	

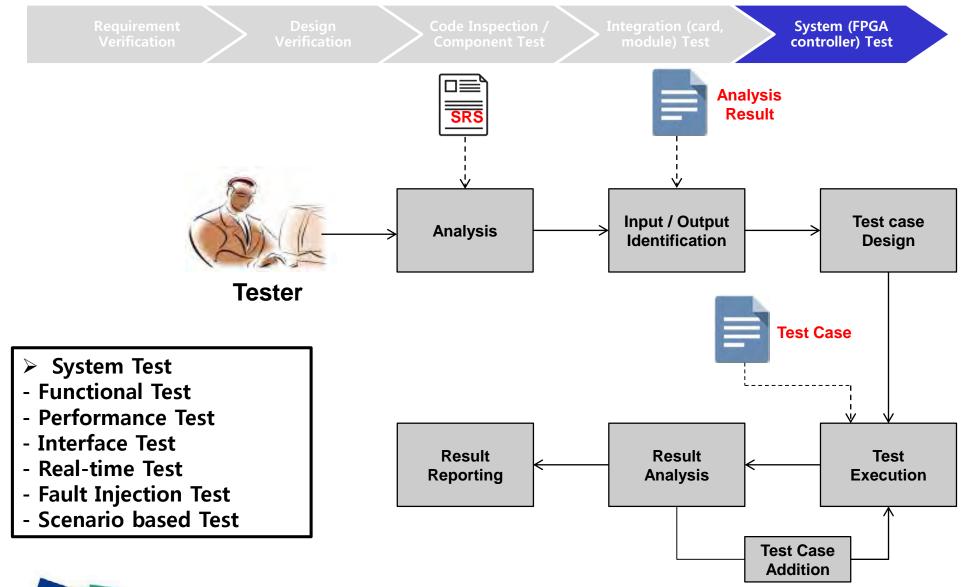
(value : actual I/O, expt: expected value, p/np : True/False


2. V&V and Testing:detail output example 2-2. Component Test


2. V&V and Testing 2-3. Integration Test

- > FPGA verification using hardware signal triggering and monitoring
- > Test criteria : Requirement coverage
- > Test environment : Jig board and signal jumpers for monitoring


2. V&V and Testing 2-3. Integration Test


10SAL

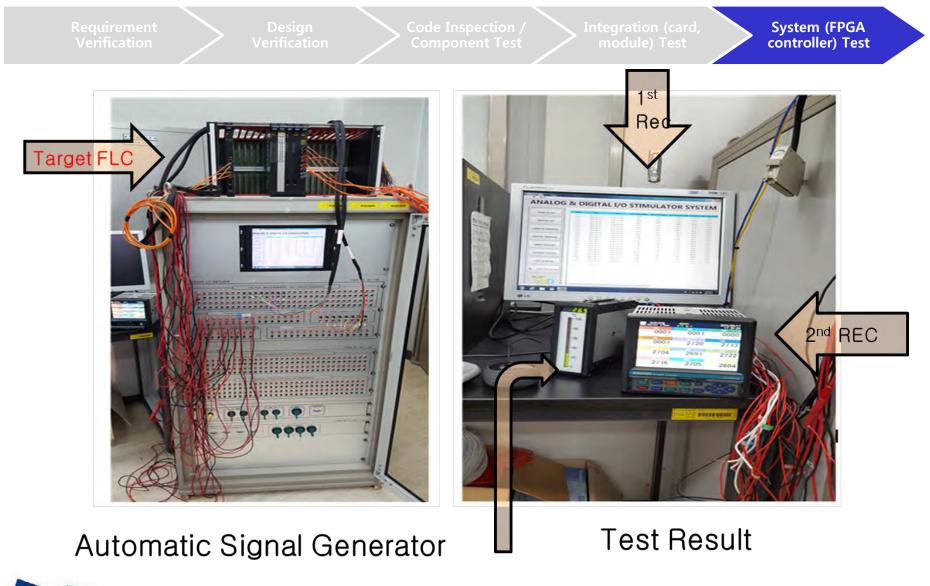
- > Validated by Hardware-in-the-loop simulation
- > Test criteria : Requirement coverage
- > Test environment : Hardware-in-the-loop simulation environment

2. V&V and Testing 2-4. System Test

2. V&V and Testing 2-4. System Test

Requirement Verification

erification


ode Inspection / omponent Test Integration (card, module) Test

System (FPGA controller) Test

- 1. Platform Qualification
 - Y=aX Linear Function : Full Range Test (10,000)
- 2. Manual Test before Automatic Testing
 - Fluke 754, Graphic Record
- 3. I/O Combination Test (AI-AO, DI-DO, DI-FDL-GP-F D L-DO)
- 4. Scenario based automatic testing after Satisfying of 1,2 and 3 conditions
 - 1) Functional (Triangle Wave : 0-Increment-peack-decrement-0): 10,000 Test Case
 - 2) Performance (Input:25ms –GP –output:50ms : Closed Loop BACK PASS/FAIL)
 - 3) Real-time (2ms~1000ms :25ms, 50ms, 500ms etc.)
 - 4) Accuracy : 0.01% tolerance
- 5. Analysis of Test Result

2. V&V and Testing 2-4. System Test

TODSAL

1. Introduction

- . V&V in FPGA Development Process
 - : NUREG/CR-7006, IEC62566

2. V&V and Testing

- . Document Evaluation and Static Verification
- . Component Test
- . Integration Test
- . System Test

- Let's share practice & ideas for peaceful use of Nuclear Energy ----- Objective/Mission of IAEA, President D. Eisenhower
- To lead Nuclear Renaissance again

hank you for listening

DOOSAN Heavy Industries & Construction

Doosan Heavy Industries & Construction