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Scope: Verification of application design
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Model checking
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A short history

Theory developed in early 1980s
1990s: hardware verification
2000s: software verification
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Model checking of control logic design

Model checking does not apply to the evaluation of
sophisticated control loops…
…but it is very efficient in the context of safety critical systems!

Faults can be found in systems that have already undergone
traditional V&V.
Faults often involve scenarios that are difficult to come up with.
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NPPs in Finland

Image: Hannu Tuovila / TVO

Image: Fennovoima
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Olkiluoto 3 (under construction)
Evaluation of NPP I&C system designs 2008-2011
Evaluation of Olkiluoto 3 Protection System 2015
Evaluation of Olkiluoto 3 PACS 2015

Loviisa 1 & 2 I&C modernization
Verification of nuclear automation 2009
Verification of nuclear I&C in the LARA project 2012-2014
Verification of nuclear I&C in the ELSA project 2016

Hanhikivi 1 (decision-in-principle)
Model checking of functional, architecture-level I&C 2016

VTT customer projects
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Challenges: Modelling
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Challenges: Counterexample visualization

COMMAND

ALARM

MANUAL BYPASS
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Challenges: Requirement formalization

(G !Alarm) | (!Alarm U (Alarm & F
Shutdown -> (!Shutdown U ( ( Temperature
< 55 ) & !Shutdown & X ( !Shutdown U
Feedback_pump = OFF ) ) ) )

G ( ( Shutdown & ! ( ( T4_Level_M < 230 ) )
)  -> ( G ( V15_Open ) | ! V15_Open

U ( T4_Level_M < 230 ) ) ) )
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MODCHK – graphical tools for I&C verification [1]

Vendor-specific, proprietary
function block libraries [2]

Structural, composite models

Verification with NuSMV 2.6.0

Counterexample animation

[1] https://www.simulationstore.com/node/52
[2] A. Pakonen, T. Mätäsniemi, J. Lahtinen, T. Karhela, A Toolset for Model Checking of PLC Software, 18th IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA2013, 10-13 September 2013, Cagliari,
Italy, Proceedings. IEEE (2013)
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MODCHK: Counterexample visualization

2D animation, with numerical monitors for analogue signals
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VHDL model checking

VHDL model checking tools have been proposed. [1]

”Tweaking” (simplification / abstraction) is still needed in the
case of, e.g., timed delays.

Megahertz scale clock cycle vs. second-scale delays -> large
integer variables & state space explosion [2]

Theoretical problems for VHDL finite-state verification:
Increasingly delayed signal assignment nested in an infinite loop [1]

Non-halting recursive function with local variables [1]

[1] Déharbe, D., Shankar, S., Clarke, E.M.: Model Checking VHDL with CV. Proceedings of the Second International
Conference on Formal Methods in Computer-Aided Design. FMCAD '98. 508-514. Springer-Verlag, London, UK, 1998
[2] Lahtinen, J., Ranta, J., Lötjönen L.: CORSICA 2013 work report: Test set generation, FPGA model checking, and fault
injection. VTT Research Report VTT-R-00212-14, 2014.
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VHDL model checking – the ”hard” way

COMMAND

ALARM

MANUAL BYPASS
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VHDL model checking with MODCHK

Encapsulation of VHDL code
Joint verification of p and FPGA systems
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Application logic model checking: p vs. FPGA

p model checking FPGA model checking
FB: Automatic model generation not
possible, if the basic blocks are
proprietary. Abstraction is also often
needed.

FB: Automatic model generation not
possible, if the basic blocks are
proprietary. Abstraction is also often
needed.
VHDL: Automatic model generation not
entirely feasible, e.g., timed delays
have to be scaled.

FB: Graphical tools can be used for
modelling & block-level
counterexample animation.

FB / VHDL: Graphical tools can be
used for modelling & block-level
counterexample animation.
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Olkiluoto 3 (under construction)
Evaluation of NPP I&C system designs 2008-2011
Evaluation of Olkiluoto 3 Protection System 2015
Evaluation of Olkiluoto 3 PACS 2015

Loviisa 1 & 2 I&C modernization
Verification of nuclear automation 2009
Verification of nuclear I&C in the LARA project 2012-2014
Verification of nuclear I&C in the ELSA project 2016

Hanhikivi 1 (decision-in-principle)
Model checking of functional, architecture-level I&C 2016

VTT customer projects
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OL3 I&C Architecture
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Priority and Actuator Control System (PACS)
functions

Between actuators and main I&C systems
Controls:

Valves (control, isolation, solenoid)
Motors for various components (e.g. pumps, fans)

Performs functions:
Prioritization of actuation requests
Drive actuation
Drive monitoring
Component protection (terminate command to valve if a travel limit
and/or torque limit switch responds)
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PACS components

To introduce diversity, OL3 PACS uses two different modules:
AV42
SPLM1-PC11

TELEPERM XS
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AV42

Areva NP AV42 Priority Actuation and
Control (PAC) Module
Two major components:

Programmable logic device (PLD)
consisting of interconnected logic gate arrays
ASIC PROFIBUS controller for non-safety-
related functions

Detailed design specification, using the
ALTERA tool for PLD programming with
predefined function blocks
Programming tool: ALTERA MAX+plus II
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AV42 PLD functions

Safety-related functions implemented in
the PLD:

Acquisition and prioritization of safety-related
commands
Acquisition and processing of the checkback
signals from the actuators
Command output and command termination
Output of signals to lamps on I&C panels
Test logic incl. lamp test

Application I/O number: 60
Internal memories, delays
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SPLM1-PC11

Logic functions for priority and monitoring
are distributed among two PLD devices.
a dedicated instance of the SPLM1
programmable logic module of the
TELEPERM XS (TXS) equipment platform

Detailed design specification using VHDL
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SPLM1-PC11 functions

Safety-related functions implemented in
the PLDs:

Acquisition and prioritization of safety-related
commands
Acquisition and processing of the checkback
signals from the actuators
Command output and command termination
Output of signals to lamps on I&C panels
Test logic incl. lamp test

Application I/O number: ~40
VHDL code: ~2500 lines
Internal memories, delays
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Verifying AV42

Model built graphically, using MODCHK
Model state space: ~ 1014 reachable states
Analysis times: less than a second – some minutes (depending on
property)
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Verifying PC11

Model built manually based on VHDL code
Model state space: ~ 1020 reachable states
Analysis times: seconds
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Verifying the functionality of PS + AV42 + PC11

Encapsulated
PC11 function

Encapsulated
AV42 function

Confidential figure redacted.



2804/10/2016 28

Verification results for the PLDs

No issues relevant to safety were detected in the PLD
application logics.

Minor issues (no practical relevance) related to checkback
delays – discrepancy between processing details and simplified
presentation in the manuals
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Application logic: Microprocessor vs. FPGA

Microprocessor FPGA
The application logic is designed using
function blocks, or some other suitable
programming language.

The application logic is designed using
function blocks, or some other suitable
programming language.

It is very easy to design an application
logic that is very complex.

It is very easy to design an application
logic that is very complex.

Most real-world applications are
complex enough to prevent 100%
functional testing.

Most real-world applications are
complex enough to prevent 100%
functional testing.

While requiring some effort, model
checking is a relatively cheap method
given the benefits.

While requiring some effort, model
checking is a relatively cheap method
given the benefits.
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Conclusions

Model checking of FPGA designs is feasible in practice.

Expertise is required, but work effort is calculated in days, not weeks.

The analysis itself is fast and exhaustive, even when verifying systems
that are consist of both microprocessor and FPGA application logic.

http://www.vttresearch.com/modelchecking


