
VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD

Verification of FPGA
application design by model
checking
9th Workshop on the application of FPGAs in NPPs
Antti Pakonen
VTT Technical Research Centre of Finland Ltd

204/10/2016 2

Scope: Verification of application design

Program / Logic

Function Block Diagram
FPGA schematic
VHDL

Code / Netlist

C, Java…
Assembly
FPGA netlist

Embedded
System

PLC, FPGA,
PC, C…

304/10/2016 3

Model checking

404/10/2016 4

A short history

Theory developed in early 1980s
1990s: hardware verification
2000s: software verification

504/10/2016 5

Model checking of control logic design

Model checking does not apply to the evaluation of
sophisticated control loops…
…but it is very efficient in the context of safety critical systems!

Faults can be found in systems that have already undergone
traditional V&V.
Faults often involve scenarios that are difficult to come up with.

604/10/2016 6

NPPs in Finland

Image: Hannu Tuovila / TVO

Image: Fennovoima

704/10/2016 7

Olkiluoto 3 (under construction)
Evaluation of NPP I&C system designs 2008-2011
Evaluation of Olkiluoto 3 Protection System 2015
Evaluation of Olkiluoto 3 PACS 2015

Loviisa 1 & 2 I&C modernization
Verification of nuclear automation 2009
Verification of nuclear I&C in the LARA project 2012-2014
Verification of nuclear I&C in the ELSA project 2016

Hanhikivi 1 (decision-in-principle)
Model checking of functional, architecture-level I&C 2016

VTT customer projects

804/10/2016 8

Challenges: Modelling

904/10/2016 9

Challenges: Counterexample visualization

COMMAND

ALARM

MANUAL BYPASS

1004/10/2016 10

Challenges: Requirement formalization

(G !Alarm) | (!Alarm U (Alarm & F
Shutdown -> (!Shutdown U ((Temperature
< 55) & !Shutdown & X (!Shutdown U
Feedback_pump = OFF))))

G ((Shutdown & ! ((T4_Level_M < 230))
) -> (G (V15_Open) | ! V15_Open

U (T4_Level_M < 230))))

1104/10/2016 11

MODCHK – graphical tools for I&C verification [1]

Vendor-specific, proprietary
function block libraries [2]

Structural, composite models

Verification with NuSMV 2.6.0

Counterexample animation

[1] https://www.simulationstore.com/node/52
[2] A. Pakonen, T. Mätäsniemi, J. Lahtinen, T. Karhela, A Toolset for Model Checking of PLC Software, 18th IEEE
International Conference on Emerging Technologies and Factory Automation, ETFA2013, 10-13 September 2013, Cagliari,
Italy, Proceedings. IEEE (2013)

1204/10/2016 12

MODCHK: Counterexample visualization

2D animation, with numerical monitors for analogue signals

1304/10/2016 13

VHDL model checking

VHDL model checking tools have been proposed. [1]

”Tweaking” (simplification / abstraction) is still needed in the
case of, e.g., timed delays.

Megahertz scale clock cycle vs. second-scale delays -> large
integer variables & state space explosion [2]

Theoretical problems for VHDL finite-state verification:
Increasingly delayed signal assignment nested in an infinite loop [1]

Non-halting recursive function with local variables [1]

[1] Déharbe, D., Shankar, S., Clarke, E.M.: Model Checking VHDL with CV. Proceedings of the Second International
Conference on Formal Methods in Computer-Aided Design. FMCAD '98. 508-514. Springer-Verlag, London, UK, 1998
[2] Lahtinen, J., Ranta, J., Lötjönen L.: CORSICA 2013 work report: Test set generation, FPGA model checking, and fault
injection. VTT Research Report VTT-R-00212-14, 2014.

1404/10/2016 14

VHDL model checking – the ”hard” way

COMMAND

ALARM

MANUAL BYPASS

1504/10/2016 15

VHDL model checking with MODCHK

Encapsulation of VHDL code
Joint verification of p and FPGA systems

1604/10/2016 16

Application logic model checking: p vs. FPGA

p model checking FPGA model checking
FB: Automatic model generation not
possible, if the basic blocks are
proprietary. Abstraction is also often
needed.

FB: Automatic model generation not
possible, if the basic blocks are
proprietary. Abstraction is also often
needed.
VHDL: Automatic model generation not
entirely feasible, e.g., timed delays
have to be scaled.

FB: Graphical tools can be used for
modelling & block-level
counterexample animation.

FB / VHDL: Graphical tools can be
used for modelling & block-level
counterexample animation.

1704/10/2016 17

Olkiluoto 3 (under construction)
Evaluation of NPP I&C system designs 2008-2011
Evaluation of Olkiluoto 3 Protection System 2015
Evaluation of Olkiluoto 3 PACS 2015

Loviisa 1 & 2 I&C modernization
Verification of nuclear automation 2009
Verification of nuclear I&C in the LARA project 2012-2014
Verification of nuclear I&C in the ELSA project 2016

Hanhikivi 1 (decision-in-principle)
Model checking of functional, architecture-level I&C 2016

VTT customer projects

1804/10/2016 18

OL3 I&C Architecture

1904/10/2016 19

Priority and Actuator Control System (PACS)
functions

Between actuators and main I&C systems
Controls:

Valves (control, isolation, solenoid)
Motors for various components (e.g. pumps, fans)

Performs functions:
Prioritization of actuation requests
Drive actuation
Drive monitoring
Component protection (terminate command to valve if a travel limit
and/or torque limit switch responds)

2004/10/2016 20

PACS components

To introduce diversity, OL3 PACS uses two different modules:
AV42
SPLM1-PC11

TELEPERM XS

2104/10/2016 21

AV42

Areva NP AV42 Priority Actuation and
Control (PAC) Module
Two major components:

Programmable logic device (PLD)
consisting of interconnected logic gate arrays
ASIC PROFIBUS controller for non-safety-
related functions

Detailed design specification, using the
ALTERA tool for PLD programming with
predefined function blocks
Programming tool: ALTERA MAX+plus II

2204/10/2016 22

AV42 PLD functions

Safety-related functions implemented in
the PLD:

Acquisition and prioritization of safety-related
commands
Acquisition and processing of the checkback
signals from the actuators
Command output and command termination
Output of signals to lamps on I&C panels
Test logic incl. lamp test

Application I/O number: 60
Internal memories, delays

2304/10/2016 23

SPLM1-PC11

Logic functions for priority and monitoring
are distributed among two PLD devices.
a dedicated instance of the SPLM1
programmable logic module of the
TELEPERM XS (TXS) equipment platform

Detailed design specification using VHDL

2404/10/2016 24

SPLM1-PC11 functions

Safety-related functions implemented in
the PLDs:

Acquisition and prioritization of safety-related
commands
Acquisition and processing of the checkback
signals from the actuators
Command output and command termination
Output of signals to lamps on I&C panels
Test logic incl. lamp test

Application I/O number: ~40
VHDL code: ~2500 lines
Internal memories, delays

2504/10/2016 25

Verifying AV42

Model built graphically, using MODCHK
Model state space: ~ 1014 reachable states
Analysis times: less than a second – some minutes (depending on
property)

2604/10/2016 26

Verifying PC11

Model built manually based on VHDL code
Model state space: ~ 1020 reachable states
Analysis times: seconds

2704/10/2016 27

Verifying the functionality of PS + AV42 + PC11

Encapsulated
PC11 function

Encapsulated
AV42 function

Confidential figure redacted.

2804/10/2016 28

Verification results for the PLDs

No issues relevant to safety were detected in the PLD
application logics.

Minor issues (no practical relevance) related to checkback
delays – discrepancy between processing details and simplified
presentation in the manuals

2904/10/2016 29

Application logic: Microprocessor vs. FPGA

Microprocessor FPGA
The application logic is designed using
function blocks, or some other suitable
programming language.

The application logic is designed using
function blocks, or some other suitable
programming language.

It is very easy to design an application
logic that is very complex.

It is very easy to design an application
logic that is very complex.

Most real-world applications are
complex enough to prevent 100%
functional testing.

Most real-world applications are
complex enough to prevent 100%
functional testing.

While requiring some effort, model
checking is a relatively cheap method
given the benefits.

While requiring some effort, model
checking is a relatively cheap method
given the benefits.

3004/10/2016 30

Conclusions

Model checking of FPGA designs is feasible in practice.

Expertise is required, but work effort is calculated in days, not weeks.

The analysis itself is fast and exhaustive, even when verifying systems
that are consist of both microprocessor and FPGA application logic.

http://www.vttresearch.com/modelchecking

