

FPGAs in Safety Related I&C Applications in Nordic NPPs

Energiforsk/ENSRIC Project

Sofia Guerra and Sam George 3 October 2016

PT/429/309/44

xmouth House 3–11 Pine Street London EC1R 0JH * +44 20 7832 5850 F +44 20 7832 5853 E office@adelard.com W www.adelard.com

Adelard

- Adelard LLP is an independent product and services company supporting its clients to achieve safe, dependable and secure systems.
- 29 years of consultancy and training
- Developer of numerous safety standards
- Author of many safety justifications- civil and defence sectors
- Assessed many safety cases defence and civil
- Developed and assessed critical software
- Research into safety and dependability
- Develops and markets the Assurance Safety Case Environment (ASCE) tool

Outline

- Background
- Are FPGA-based systems feasible for future Nordic applications?
- Implications of FPGA-based solutions in terms of V&V

Background to presentation

- Two projects funded by Energiforsk/ENSRIC on FPGAs
- 2014/2015
 - Investigate whether FPGA-based systems are feasible for future programs in Nordic NPPs
- 2015/2016
 - Implications of FPGA-based solutions (on V&V)

Project aims

- Investigate whether FPGA-based systems are feasible for future programs in Nordic NPPs
- Three major aspects
 - Review of applications
 - Current and historical use of FPGAs across different licensing regimes
 - Market availability
 - Chip suppliers
 - Platform suppliers
 - Standards in the Nordic environment
 - Survey of standards relevant to FPGA use
 - Review and focus on Nordic standards

Outline

- Background
- 1st Project
- 2nd Project

1st Project outline

- Intro: What are FPGAs?
- Task 1: Review of applications
- Task 2: Market availability
- Task 3: Standards in Nordic countries

What are FGPAs?

- Explanation what FPGAs are and their typical development process
- Types of FPGA (SRMA, Flash and Anti-fuse)
- Regulatory aspects
- FPGAs advantages and disadvantages

Task 1: Review of installations

- Identified safety-related FPGA-based applications in nuclear and non-nuclear sectors
- Nuclear applications categorised by country / licensing regime
 - Identify history of implementation
 - Early experiences and lessons learnt
 - Other options considered
 - Includes
 - Sweden and Finland
 - US, UK, France, Czech Rep
 - Ukraine, and Bulgaria
 - Canada and Argentina
 - Japan, China, South Korea
 - Taiwan

Task 2: Market availability and suppliers

- Two types of suppliers: chip suppliers and platform suppliers
- Chip suppliers provide FPGA circuits, also typically software tools for developing FPGA applications
 - Typically supply "families" of chips used for different purposes
- Platform suppliers provide entire platform to NPPs, including FPGA application, interfaces with other components
 - Typically focus on a single major platform, which may be customised to provide different functionality

Task 3: Standards and Nordic environment

- Relevant standards can be divided into four major categories:
 - General nuclear standards — STUK Guide YVL B.1, IEEE Std 603
 - Digital I&C equipment in a safety-related role
 - STUK Guide YVL E.7, IEC 61508, IEC 61513
 - Software development methodologies
 - IEEE 1012, IEEE Std 1028
 - FPGA-specific standards
 - Until recently there was little in the way of specific FPGA guidance

Nordic standards

- YVL B.1, YVL E.7 and SSM regulations SSMFS 2008:1
 - Assessed these clause-by-clause to identify areas of concern regarding FPGAs
 - No significant findings some minor terminology differentiation
 - Can reasonably be used in a framework of FPGA-specific guidance to incorporate FPGAs in nuclear power plants

FIELD PROGRAMMABLE GATE ARRAYS IN SAFETY RELA-TED INSTRUMENTATION AND CONTROL APPLICATIONS

REPORT 2015:112

Workshop

FPGA-based Instrumentation and Control Systems in Nuclear Applications

- Participants from utilities, suppliers and SSM
- Presentation of project results
- Experiences with licensing FPGA based systems in Sweden and elsewhere
- Presentation from supplier of FPGA-based safety solutions from supplier

Venue: Energiforsk, Olof Palmes gata

Sign up at the latest by January 30 to

organizations, but no show is debited

The number of participants is limited.

31, 6th floor, Stockholm, Sweden.

monika.adsten@energiforsk.se.

The seminar is free of charge for

participants from relevant

with 1 000 SEK

Field Programmable Gate Arrays (FPGAs) have been gaining interest from the nuclear industry for a number of years. Their simplicity compared to microprocessor-based platforms is expected to simplify the licensing approach, and therefore reduce licensing risks compared to software-based solutions.

Energiforsk (formerly Elforsk) Nuclear Safety Related I&C research program, ENSRIC, are running a project to develop an overview and understanding of the position of safety related systems built on FPGA-technology for nuclear applications. The aim is to investigate if FPGA-based systems are a realistic alternative in future investment programs in the Nordic NPPs within the next 5 years, considering technological advancement, licensing, market situation etc.

The results from the study will be presented at this seminar, together with presentations from suppliers and experience from NPPs using FPGA-based applications. ENSRIC is financed by E.On, Fortum, Karlstads Energi, Skellefteå Kraft, The Swedish Radiation Safety Authority, TVO and Vattenfall.

PROGRAM

- 12.30 Registration and coffee
- 13.00 Welcome and introduction Monika Adsten, Energiforsk and Anders Johansson, Vattenfall
- 13.10 Presentation of results from the ENSRIC study FPGAs in safety related I&C applications in Nordic NPPs Sofia Guerra and Catherine Menon, Adelard, UK
- 14.10 Application of FPGA-based Safety Controller for Implementation of NPPs I&C Systems Anton Andrashov, Radiy, Ukraine

14.40 Coffee

- 15.00 Possible uses of FPGAs in Nuclear I&C Nguyen Thuy EdF, France
- 15.30 Experiences from FPGA applications at Ringhals 2 Fredrik Bengtsson, Vattenfall Ringhals NPP, Sweden
- 15.45 Justifying an FPGA-based system performing a Cat C function Sofia Guerra, Adelard, UK
- 16.15 Discussion
- 17.00 End of seminar

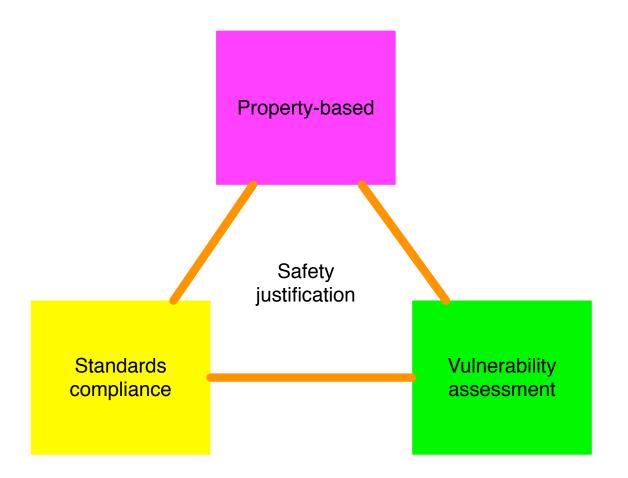
Energiforsk

Conclusion of first project

- FPGAs may play a role in future modernisation programs of I&C systems in Nordic NPPs
- What are the implications of FPGA-based systems in Nordic NPPs?
 - Focus on verification and validation
 - How do they compare to microprocessor based solutions?

Outline

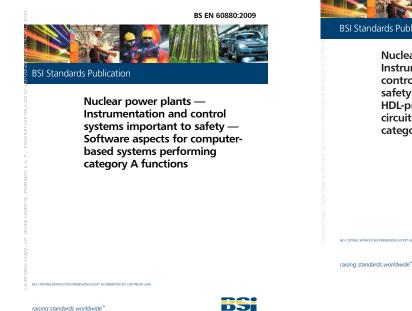
- Background
- 1st project
 - What are FPGAs?
 - Review of applications
 - Market availability
 - Standards in Nordic countries
 - Workshop
- 2nd project
 - Objectives
 - Approach
 - Conclusion



Objective

- Review verification and validation activities needed to implement an application in an FPGA-based product
- Compare with what might be equivalent for a microprocessor based application
- What does equivalence mean?
 - Different activities have different objectives
 - Different levels of assurance
- Focus on their contribution to the safety demonstration
- Systems implementing safety functions (as Cat A in IEC 61226)

Strategy triangle of safety demonstration



Standards compliance

- Compare verification and validation required by comparable standards for FPGA-based and software-based systems
- IEC 62566 and IEC 60880

BSI Standards Publication Nuclear power plants — Instrumentation and control important to safety — Development of HDL-programmed integrated circuits for systems performing category A functions

DJI

BS IEC 62566:2012

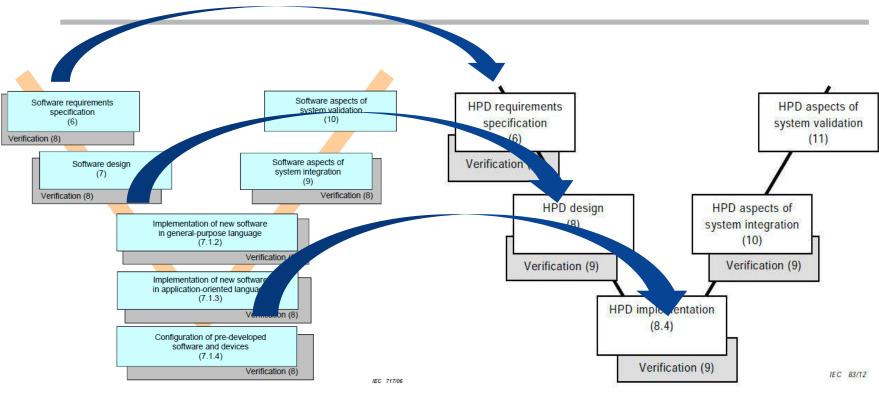


Figure 3 - Development activities of the IEC 60880 software safety lifecycle

Figure 2 – Development life-cycle of HPD

Red – differences

Green – text required for clarity

IEC 62566

Comparison

Black- common

Coverage and types	Adequacy of design specification down to module level Decomposition of design into modules wrt technical feasibility, testability, readability, modifiability Code verification to begin with source code analysis then module testing Full testing guidance given in Appendix E Module verification to show that all modules perform intended functions and not unintended functions	Each module to be specifically tested, and all features mentioned in the requirements spec Adequacy of design specification down to module level Decomposition of design into modules testability, understandability, modifiability Static verification to include type / syntax checking, parameter checking, 00R checks, completeness of sensitivity list and cases, detection of dead states and side effects, logical and physical Design Rule Checks Tests should be performed for worst case and best case, and test results documented
Criteria	Test coverage criteria to be justified and documented	Criteria shall be documented and analysed to show sufficiency for requirement spec If a criteria isn't achieved then a justification must be provided
Tools	Automated tools may be used for code verification Tools shall be qualified as per requirements of the standard	
Documentation	Verification plan, established before any verification activities, documents all criteria, techniques and tools Plan includes selection of verification strategies, selection and utilisation of tools, execution of verification, documentation, evaluation of verification results Verification plan shall identify any evidence needed to confirm extent of testing Results of verification shall be documented, including	Verification plan, established before any verification activities, documents all criteria, techniques and tools Plan includes selection and justification of verification strategies, selection and utilisation of tools, execution of verification, documentation, evaluation of verification results All verification strategies to be justified Verification plan to document all tests including goals, criteria and expected results

IEC 60880

© ADELARD

Standards comparison

- No significant differences
- IEC 62566 less prescriptive about specific documents than IEC 60880
- Some difference on specific requirements due to differences in technology, e.g., static timing analysis

Vulnerabilities

- Vulnerabilities are weaknesses in a system
- They could lead to a hazardous situation, but are not strictly a hazard
- Consider different types of vulnerabilities for FGPA-based systems, and compare with vulnerabilities for microprocessor based systems, and how absence of these can be shown

Format

Vulnerability	FPGA		Microprocessor	
	Explanation	V&V	Explanation	V&V
Timing errors				
Initialisation design errors				
Translation errors				
Incorporation of third-party designs				

- And technology-specific issues
 - SRAM, Antifuse, Flash

FPGAs - vulnerabilities

- Assume constraints imposed by IEC 62566 hold, e.g.,
 - Synchronous design
 - Adherence to coding rules
- Mainly concern the tools used to refine an HDL specification into a deployed FPGA.
- IEC 62566 mandates that all RTL designs be fully synchronous, if maximum logic propagation times for combinatorial logic do not generate unsynthesisable timing constraints
 - FPGA-specific timing vulnerabilities can in principle be reduced to toolchain vulnerabilities.
- Some vulnerabilities of microprocessor-based solutions are not applicable to FPGAs
 - E.g. processor interrupts

FPGAs – vulnerabilities (2)

- Closed source chip design and bitstream format
- Lack of vendor independence in post-place-and-route analysis
- Hidden state retention in cyclic structures
- Potential control/data flow problems if a sequential design paradigms are projected too literally into spatial realisation
- Multiple clock domains possible
- HDL assertion languages such as SVA/PSL may not be best suited to define application-level behaviour, leading to lack of V&V coverage of important properties
- SEUs and mitigation methods
- Built-in peripheral functions limit portability (AD and other hard IP cores)

Behavioural properties

Property		Discussion		
P1	Functionality	The function performed by the system		
P2	Timing	Includes time response, permissible clock frequencies, propagation delays, etc.		
P3	Accuracy	Affected by analogue/digital conversion, processing functions, IP cores		
P4	Availability	Readiness for correct service, a system-level attribute supported by component attributes		
P5	Fault detections and tolerance	Internal detection of faults		
P6	Robustness	Tolerance to out-of-normal inputs and stressful conditions		
P7	Failure recovery	The ability to recover from failures		

Behavioural properties (2)

- Functionality e.g. multithreaded/concurrent design difficult to achieve reliably in microprocessor-based systems
- Worst case execution time
- Spatial dimension to redundancy and availability
- Failure recovery
- Accuracy A/D conversion
- Fault tolerance on-chip strategies

V&V of behavioural properties: example differences

• Confidence levels

- Code review
- High and low level timing correctness
- Machine-level code correctness
- Cost
 - Verification effort
 - Tools
- Determinism and handling of external asynchronous processes

Conclusions

- We compared V&V techniques for FPGAs and microprocessor based systems
 - Requirements from standards
 - Behaviour based analysis
 - Vulnerabilities associated with the different technologies
- Few significant differences identified as result of standards comparison
- Treatment of timing and concurrency different
- Typical vulnerabilities of microprocessors are absent from FPGAs, but possible issues with lack of transparency of code artefacts
- More comprehensive toolset for FPGAs

