Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of NPPs

A new IAEA publication

Janos Eiler Lyon, France, 3 October 2016

Outline

- IAEA activities in the area of NPP I&C engineering
- IAEA Nuclear Energy Series Document on:
 - "Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of NPPs"

Technical Working Group

Technical Working Group on NPP I&C

Current members of TWG-NPPIC

- Argentina,
- Brazil
- Canada,
- China,
- Czech Republic,
- Finland,
- France,
- Germany,
- Hungary,
- India,
- Japan,
- Republic of Korea,
- Mexico,

- Pakistan,
- Russian Federation,
- Spain,
- Sweden,
- Switzerland,
- Ukraine,
- United Kingdom,
- United States of America
- International Organizations:
 - IEC TC45,
 - European Commission (JRC)

TWG group photo from 2015

 The program for 2016 - 2019 was compiled in the last biennial meeting of the TWG in May 2015

Chairman of the TWG NPPIC

Richard Wood of UT

French presentation in the TWG meeting

Priority list of recommendations from the 2015 TWG meeting

- I&C architectural approaches;
- Engineering and design aspects of computer security in NPP I&C systems;
- The application of wireless technologies in NPP I&C systems;
- Aging management of electrical equipment and components;
- Commercial dedication, application of COTS, type approval, product certification;
- I&C aspects of computerized operator support systems;
- Computer screen (VDU) based control room technologies;
- I&C support for process performance optimization;
- Application of different sets of codes, standards, and safety classifications;
- Support for newcomer countries and new NPPs.

I&C architectural approaches

- Defense-in-depth
 - I&C functions for "Design Extension Conditions"
- Diversity
 - Justification of the required level of diversity
 - Diverse actuation system design
- Sustainability (ease-of-modernization)
- Security zones
- The application of diversity, independence and physical separation between different levels of the I&C system
- Design methods to resolve common-cause failure vulnerabilities

Harmonization of licensing practices

- Products accepted by regulators in one country are frequently difficult to obtain acceptance by another regulator
- Harmonization efforts are underway but progress is very slow
- IAEA TECDOC and new Nuclear Energy Series guidance

Issues with software dependability

- The evaluation and dependability assessment of software important to safety is an essential and difficult aspect of digital systems safety justification
- The concern is with detecting and removing residual design errors
- These errors might be a risk of common-cause failure (CCF) that could defeat redundancy or defence-in-depth
- To provide adequate confidence, extensive work is under way at the IAEA on software verification techniques

DEPENDABILITY ASSESSMENT OF SOFTWARE FOR SAFETY INSTRUMENTATION AND CONTROL SYSTEMS AT NPPs

9 June 2015

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2014

Computer security

- Nuclear I&C systems provide safety functions
- They may be targeted by adversaries for sabotage resulting in unacceptable or high radiological consequences
- A cyber-attack can cause an initiating event and/or can undermine the performance of a safety function
- IAEA guidance aims to overlay security considerations on top of the systems' safe, reliable, and deterministic behavior to meet safety and security objectives at the same time

Coping with aging and obsolescence

- As most of the I&C systems are replaceable, ageing systems are not likely to create obstacles that could compromise long term operation
- However, some components, including power and signal cabling, are very difficult to replace
- The IAEA has already released a number of reports related to I&C ageing management

covered low voltage cabl

- A recently concluded CRP
- I&C modernization also ser for coping with obsolescence

Commercial dedication

- Evaluation of COTS I&C equipment and I&C architecture
- Design considerations
- Software-based systems
- Smart devices + embedded digital devices
- Bus communications and networks
- Regulatory treatment

Use of wireless technologies in NPP I&C

- The technology is finding its way in a wider scope of applications in the nuclear power industry
 - Saving cable costs and installation time
 - Increased flexibility of information gathering through temporary sensor deployment
- IAEA coordinated research project started recently
 - The overall objective is to develop and demonstrate techniques of advanced wireless communication in I&C systems of NPPs that can be used for transferring process and diagnostic information in a nuclear specific environment

I&C systems for SMRs

- Some SMRs would operate differently from current reactors and would, therefore, need new I&C approaches
- A recently completed IAEA report evaluates the current situation and provides guidance on:
 - SMR design characteristics that impact I&C
 - SMR economic considerations
 - Regulatory considerations
 - Distinctive I&C features and issues
 - Approach to I&C design
 - I&C architecture, technologies and equipment
 - Fabrication and site integration issues
 - Concepts important for operation of SMRs
 - Maintenance

IAEA NUCLEAR ENERGY SERIES No. D-NP-T-3.19

(DRAFT V4.3)

INSTRUMENTATION AND CONTROL SYSTEMS FOR ADVANCED SMALL MODULAR REACTORS

19 March, 2015

INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2015

Review Missions

IERICS missions

- IERICS: Independent Engineering Review of Instrumentation and Control Systems
 - To review the design, prototype, testing, operation, maintenance, and modernization of I&C systems
 - Conducted by a team of international experts from complementary technical areas
 - Based on appropriate IAEA documents, such as Safety Guides and Nuclear Energy Series Reports
 - Findings include a list of recommendations, suggestions and identified good practices
- IERICS mission website: <u>http://www.iaea.org/NuclearPower/IandC/IERICS/index.html</u>
- An upcoming mission is scheduled at the Chinese CNCS

IERICS missions completed to date

- Doosan Heavy Industries & Construction Co., RoK, 2010
- Research and Production Corporation Radiy, Ukraine, 2010
- Joint Stock Company VNIIAES, Russia, 2012
- Joint Stock Company SRPA "Impulse", Ukraine, 2013
- China Techenergy Co. Ltd., China, 2016

Meetings, Workshops, Conferences

Meetings, workshops, conferences

- 5 consultancy meetings on average in each year
- 3 technical meetings on average in each year
- 1 2 co-sponsorship agreements to international conferences and workshops in each year
- 2 4 TC training courses / workshops in each year

Meetings planned for 2017

- Biennial meeting of the Technical Working Group on Nuclear Power Plant Instrumentation and Control, May, Vienna
- Technical meeting on Engineering and design aspects of computer security in NPP I&C systems, Q2, UK(?)
- Research Coordination Meeting on the Application of wireless technologies in NPP I&C systems Q3, Korea
- 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface Technology (NPIC & HMIT 2017), June 11-15, 2017, San Francisco, CA, USA
- International Symposium on Future I&C for Nuclear Power Plants (ISOFIC 2017), 26-30 November 2017, Gyeongju, Republic of Korea

Publications

Publications

- Nuclear Safety Guides
- Safety Reports Series
- Technical Reports Series
- TECDOCs
- Nuclear Energy Series

Recent NE publications

- Assessing and Managing Cable Ageing in Nuclear Power Plants
- Advanced Surveillance, Diagnostics and Prognostics Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants
- Accident Monitoring Systems for Nuclear Power Plants
- Technical Challenges in the Application and Licensing of Digital I&C Systems in NPPs
- Application of FPGAs in I&C systems of NPPs

Links to access IAEA publications

- For Nuclear Energy I&C publications
 - <u>http://www.iaea.org/NuclearPower/IandC/</u>
- For all Nuclear Power Engineering Publications
 - http://www.iaea.org/NuclearPower/Engineering/Publications/
- For all Nuclear Energy Series publications
 - <u>http://www.iaea.org/OurWork/ST/NE/NESeries/ClickableMap/</u>
- Publications in general
 - http://www.iaea.org/Publications/index.html

IAEA Nuclear Energy Series Document on the "Application of FPGAs in I&C Systems of NPPs"

The need for an IAEA publication

- The IAEA has played a significant role and co-sponsorship in the international discussion on FPGAs
- The technology is finding its way very rapidly and the Member States needed guidance in the area
- To date, there has been no IAEA report available on the application of FPGAs

Objective

- To summarize current knowledge, best practices and issues associated with the application of FPGA based solutions in nuclear power plants
- To describe development processes and tools as well as licensing issues
- The document is intended to be used by Member States to support the design, licensing, and implementation of FPGAbased systems. Potential users are:
 - Nuclear power plant operators
 - Technical support organizations
 - Regulatory bodies
 - Research and development organizations
 - Manufacturers/ vendors

Meetings to produce the document

- "Position paper" drafted in the 4th and 5th FPGA workshops in 2011 and 2012
- First Consultancy Meeting
 - Vienna, 11-14 February 2013
- 6th FPGA workshop
 - Kirovograd, Ukraine, 8-11 October 2013
- Last Consultancy Meeting
 - Vienna, 17 to 21 March 2014

4th Workshop on the Application of FPGAs November 2011, Chatou, France

5th Workshop on the Application of FPGAs October 2012, Beijing, China

List of participants at the 1st CS meeting

- Andrashov, A.
- Naser, J.
- Arndt, S.
- Seaman, S.
- Eiler, J.
- Glockler, O.
- Thuy, N.
- Zeng, H.

Radiy, Ukraine EPRI, United States of America US NRC, United States of America Westinghouse, United States of America International Atomic Energy Agency SunPort SA, Switzerland EdF R&D STEP, France SNPAS, China

6th Workshop on the Application of FPGAs 8-11 October 2013, Kirovograd, Ukraine

Break-out sessions to review the draft

- 1. Introduction to the FPGA Technology Sergio Russomanno
- 2. Methods and Tools for Development and Verification Nguyen Thuy
- 3. Qualification and Licensing, Doc. chapter: Mark Lawford
- 4. Applications, FPGA-based Replacement Systems and New Designs, Steve Seaman

List of participants at the last CS meeting

- Eiler, J.
- Russomanno, S.
- Thuy, N.
- Gassino, J.
- Arndt, S.
- Naser, J.
- Glockler, O.

International Atomic Energy Agency Global Nuclear Solutions Inc., Canada EdF R&D STEP, France IRSN, France US NRC, United States of America EPRI, United States of America SunPort SA, Switzerland

The IAEA report

- Nuclear Energy Series
 - NP-T-3.17
- Chairman: Joe Naser
- 79 pages
- 6 main chapters

Structure

- Foreword
- 1. Introduction
- 2. Introduction to FPGA technology
- 3. Methods and tools for development and verification
- 4. Licensing
- 5. Replacement systems and new NPP designs
- 6. Summary
- References
- Annex I: Specific application examples and experience
- Annex II: Typical life cycle for an FPGA platform
- Glossary

Introduction to FPGA technology

- FPGAs within the HDL family
- Differences between HDL and software
- What are FPGAs?
 - Comparison between FPGAs and CPLDs
 - FPGA related technologies
 - FPGA programming process
 - FPGA based systems development life cycle
- General application areas suited to FPGA based implementations
- Advantages of FPGA based I&C systems
- Challenges with FPGA based I&C systems

Methods and tools for development and verification

- Design guidelines
 - 12 subsections (e.g. pre-developed designs, coding rules, fault tolerance, diversity, testability, etc.)
- Verification and validation
 - 7 subsections (e.g. simulation, test coverage, formal verification, hardware testing, etc.)
- Tools
 - 4 subsections (quality, integration, cyber security, and life cycle)

Licensing

- Environmental qualification
- Functional demonstration
 - 7 subsections (e.g. acceptance process of the pre-developed resources, development life cycle, analysis and verification, integration and validation, etc.)
- Regulatory perspectives on FPGA technology, licensing and standards
 - 14 subsections, e.g.
 - the application of existing software based guidance for FPGA licensing
 - standards for FPGAs
 - documentation
 - reduction in variations in standards and countries' regulations
 - simplification of regulatory requirements and structure

FPGA based replacement systems and new NPP designs

- Replacements and upgrades in existing plants
 - One-for-one module replacements or upgrades
 - Multiple module replacement
 - Replacement of entire systems
- FPGA based I&C systems and devices for a new NPP design

Publication

- The report is available now on the IAEA publications website:
 - http://www.iaea.org/Publications/index.html

Thank you for your attention!