-

Canadian Nuclear

Safety Commission

Commission canadienne de súreté nucléaire

#### Failure Mode and Effects Analysis of FPGA-Based Nuclear Power Plant Safety Systems

#### Phillip McNelles, Zhao Chang Zeng, and Guna Renganathan



8<sup>th</sup> International Workshop on the Applications of FPGAs in NPPs

Shanghai, China October 13-16, 2015



## **Presentation Outline**

#### Introduction

- Potential use of FPGAs in Canadian NPPs
- FMEA
  - Purpose of performing FPGA FMEA (Research Program)
  - FMEA Background
  - FMEA Results
  - Failure Mode Categorization
    - Failure Categories
    - "When and Why" Matrix
    - Failure Types and Parameters
  - Design Suggestions
- Conclusions

Canadian Nuclear Safety Commission



- Nuclear Power Plants (NPPs) in Canada constructed 1971-1992
  - FPGAs not implemented in NPPs at that time
  - Later implemented in non-safety systems
- FPGAs have seen more use in NPP I&C
  - International implementations
  - New builds
  - Replacement of older systems
- Potential for future use in operating plants in Canada

# Purpose of FMEA (Research Project)

- If FPGA-based systems are implemented in safety systems:
  - Must be functionally safe and reliable
  - Potential faults and failures must be known
- FMEA Research Program
  - Identify potential failure modes and causes
  - Identify methods to avoid or mitigate those failures
  - Ensure FPGA-based systems are safe to use

## Failure Mode and Effects Analysis

#### • Failure Mode and Effects Analysis (FMEA)

- Common Method in Reliability and Safety Analysis
- Start of Reliability Program (Study)
- Reviewed available data from international community (Extensive Literature Review)
- Extensive Literature Review
  - US NRC and ORNL, VTT, EPRI, OECD-NEA
  - Standards from IEC, IEEE and CSA
  - White papers from FPGA suppliers
  - Scientific/technical literature

## Failure Mode and Effects Analysis

#### • Failure Mode and Effects Analysis (FMEA)

- Performed on FPGAs to identify Failure Mode data
  - Potential Failure Modes
  - Cause(s)
  - Potential Effects on FPGA-based system
  - Effects of Latent Design Errors
  - Eliminate or Mitigate/Control Failure Modes
- Produced a list of failure modes and information
  - Identify most common/most severe failures



#### Identified potential issues

- Failure modes, faults, logic errors, human factors...
- Failures divided into categories
  - 1<sup>st</sup> : Lifecycle: "Design (Fabrication)", "Operation"
  - 2<sup>nd</sup>: Cause: "Design Defect", "Manufacturer Defect", "Environmental", "Stress/Aging", "Maintenance (Human Factors)"
- Causes, potential effects, and methods to eliminate/mitigate those failures for each set

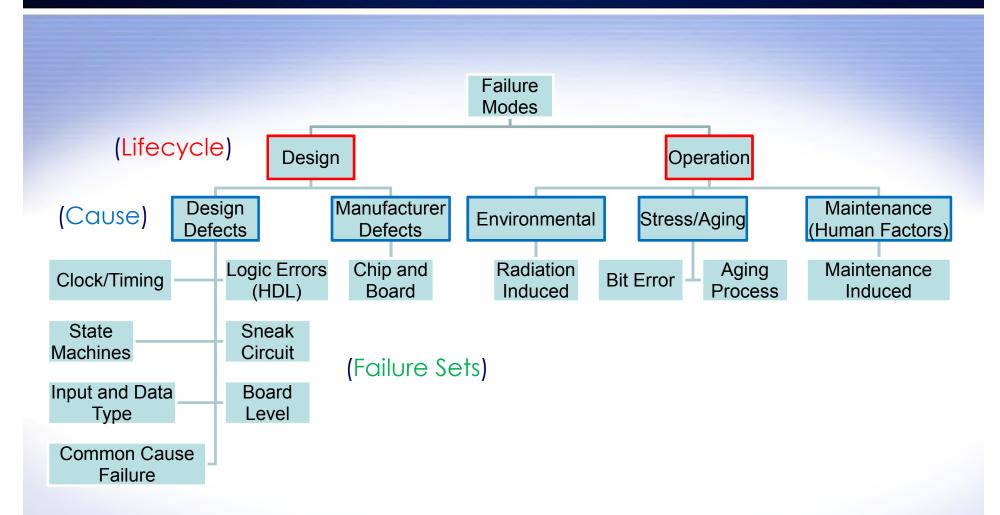


#### Design Defect:

- Logic ("Programming"), Hardware Faults
- Manufacturer Defects:
  - Failures due to issues with the physical chip/board
- Environment:
  - Radiation induced failures (SEE)
- Stress/Aging:
  - Aging Effects
- Maintenance/Human Factors:
  - Personnel/Security



#### Certain failure modes specific to FPGA


- Clock/timing failures
  - Significance of proper clock/timing behavior
  - Optimization by synthesis software may alter intended behavior
- Certain failure modes common to digital technology
  - Single Event Effects (SEE)
    - Importance of SEE mitigation
  - Programming Errors (HDL code)
    - FPGA design has some similarities with software-based design
    - Non-standard language additions may introduce failures
  - Aging Failures

## FMEA Results (Failure Sets)

 Failure "Causes" divided into "Failure Sets" based on "Failure Effects"

- Failure Effect:
  - "Consequence of a failure mode in terms of the operation, function or status of the item"
  - IEC 60812 standard (FMEA)
- Each set includes a description and mitigation
- Grouped for easier identification and mitigation

## FMEA Results (Failure Sets)



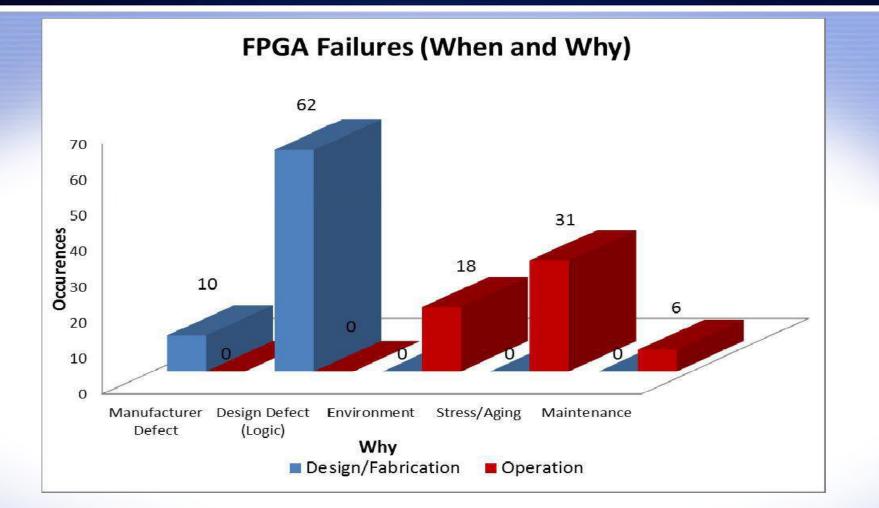
#### Failure Category Diagram

## FMEA Results (Failure Sets)

#### Sample of Failure Sets

- Design
  - Clock/Timing
  - State Machines
  - Common Cause Failure
  - Logic Errors (HDL)
- Operation
  - Aging Process Failures
  - Radiation-Induced Failures

# FMEA Results (When and Why Matrix) Additional way to categorize failure modes Presented in "When and Why" Figure


- When:
  - Stage in system lifecycle that the failure occurs
- Why:
  - Failure Category (Failure Modes)

## FMEA Results (When and Why Matrix)

#### • Lifecycle Categories ("When"):

- Design (Fabrication)
- Operation
- Cause Categories ("Why"):
  - Design Defects
  - Manufacturer Defects
  - Environmental
  - Stress/Aging
  - Maintenance (Human Factors)





FPGA FMEA "When and Why" Results

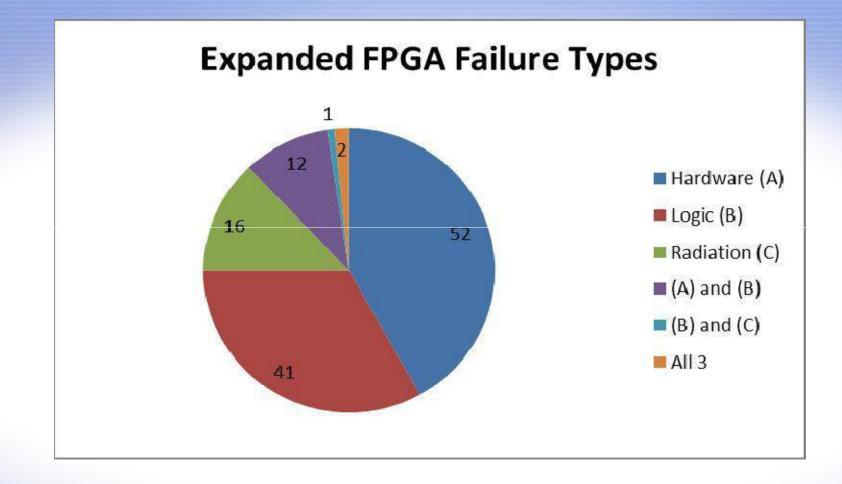
## FMEA Results (When and Why Results)

- Two important results from the graph
- "Design Stage" had most results (73)
  - Includes Logic, Timing and general Hardware faults
  - "Design Defect" most populous category
  - Most failures eliminated before implementation
- Stress/Aging Failure Mitigation
  - Aging process failures cannot be avoided
  - Revealed using self-tests and periodic testing

## Failure Types and Parameters

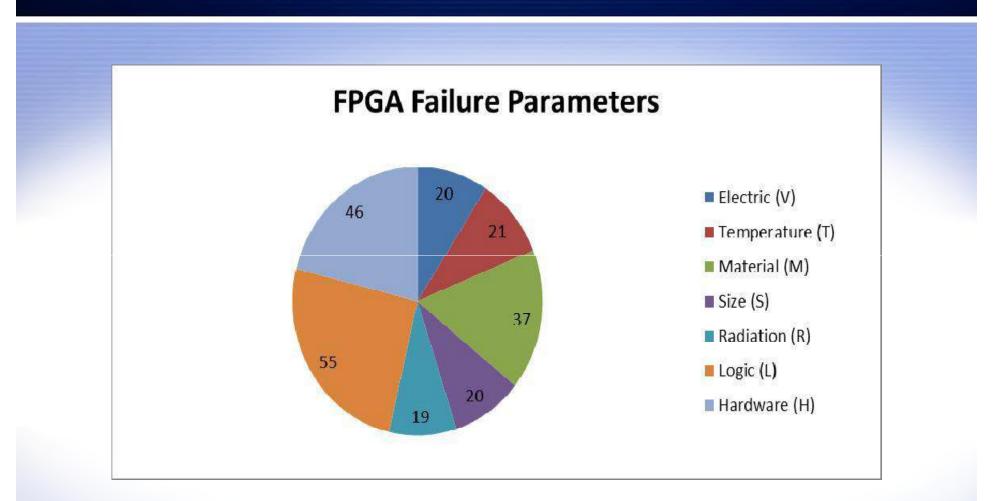
#### Failure Causes divided into "Types" and "Parameters"

| Failure<br>Type | Definition         |
|-----------------|--------------------|
| А               | Hardware Failure   |
| В               | Logic Failure      |
| С               | Radiation Failures |


| Failure<br>Parameter | Definition         |
|----------------------|--------------------|
| V                    | Electric           |
| Т                    | Temperature        |
| Μ                    | Material           |
| S                    | Chip size          |
| R                    | Radiation Failures |
| L                    | Logic Failure      |
| Н                    | Hardware (General) |

**FPGA Failure Parameters** 

#### **FPGA** Failure Types


Canadian Nuclear Safety Commission





#### **FPGA Failure Types**

## Failure Types and Parameters



#### FPGA Failure Parameters

### Failure Type and Parameter Results

#### • "Failure Type" Results:

- Hardware Faults most numerous (52)
- More Hardware and Logic faults than Radiation
- Significant overlap (Timing, Common Cause)

- "Failure Parameter" Results:
  - Shows in detail the factors affecting FPGA reliability
  - Hardware (Aging Process) failures show strong environmental dependency
  - FPGA material (technology) affects both Hardware and Radiation failures

## Design and Review Suggestions

 Research provided suggestions for design and review of FPGA systems

- Design Suggestions
  - Use of Antifuse FPGAs for radiation tolerance
  - Use of synchronous designs
  - Use of self-tests to monitor FPGA chip health
  - Use of coding standards/guides to prevent logic errors

## Design and Review Suggestions

 Research provided suggestions for design and review of FPGA systems

#### Review Suggestions

- Review system for tolerance of radiation effects
  - Design should eliminate effects of SEE (where possible)
  - Design should mitigate any effects of residual SEE
- Review system for mitigation of aging effects
  - Design should incorporate methods to detect aging failures (Self-tests)
  - Design should include mitigations for effects of residual aging failures

# Conclusions

#### Detailed FMEA was performed to identify:

- Failure modes, causes, and effects
- Expanded to include avoidance and mitigation
- FMEA Categorization
  - Categories facilitate detection and avoidance/ mitigation of failure modes
    - Failure modes divided by Lifecycle ("Design" and "Operation")
    - Lifecycle failure modes divided by "Causes"
    - "Failure sets" group failure modes by similar cause/effects
    - Failure "Types" and "Parameters" provide additional information on root cause of failure modes



#### Additional Conclusions from FMEA Study

- Many failure modes not specific to FPGAs
  - Common to digital technology
- FPGA design shares aspects of software-based design
- Clock and timing behavior critical to correct operation
- Non-standard languages can introduce failure modes
- Synthesizer code optimization features are to be avoided

# Conclusions

#### Primary Results

- Methods to avoid or mitigate all identified failure modes
- Majority of failures during the design stage (eliminated)
- Several aging failures that must be mitigated (self tests and periodic tests)
- Hardware (aging) failures have environmental factors
- Large number of potential logic and timing errors



#### Future work on FPGA-based systems:

- Failure mode information utilized for FPGA-based system modelling and analysis
- Comparison of reliability analysis methods
- Defenses against SEE failures
  - (Error Correcting Codes, Modular Redundancy, etc.)



#### • Thank you for your time

• Questions?



- [1] McNelles, P., Zeng, Z.C., Renganathan, G., 2015, "Modelling of Field Programmable Gate Array Based Nuclear Power Plant Safety Systems Part I: Failure Mode and Effects Analysis", *Proc. Of the 7<sup>th</sup> International Conference on Modelling and Simulation in Nuclear Science and Engineering*, Ottawa, Canada.
- [2] Bobrek, M., & Bouldin, D., *Review Guidelines for FPGAs in NPP Safety Systems,* Oak Ridge, Tennessee, 2010.
- [3] United States Nuclear Regulatory Commission (U.S. NRC), NUREG-7006, *Review Guidelines for Field Programmable Gate Arrays in Nuclear Power Plant Safety Systems,* Washington D.C., 2010.
- [4] Electric Power Research Institute (EPRI), TR-1019181, *Guidelines on the Use of Field Programmable Gate Arrays (FPGAs) in Nuclear Power Plant I&C System.* Palo Alto, California, 2009.
- [5] EPRI, TR-1022983, Recommended Approaches and Design Criteria for Application of Field Programmable Gate Arrays in Nuclear Power Plant Instrumentation and Control Systems, Palo Alto, California, 2011.
- [6] Valtion Teknillinen Tutkimuskeskus (VTT), *The current state of FPGA technology in the nuclear domain.* Vuorimiehentie, Finland, 2011.

Canadian Nuclear Safety Commission

Commission canadienne de súreté nucléaire

## Canadian Nuclear Safety Commission

#### nuclearsafety.gc.ca

facebook.com/CanadianNuclearSafetyCommission

youtube.ca/cnscccsn



© CNSC Copyright 2013

