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Presentation OutlinePresentation Outline

• Introduction
– Digital system reliability modelling

• Dynamic Reliability
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• Dynamic Reliability
– Dynamic Flowgraph Methodology (DFM)

– Background, Theory and DFM Software (Dymonda)

– DFM/Fault Tree Comparison 

– FPGA-based Test System

– DFM/Fault Tree Comparison Results

• Conclusions



IntroductionIntroduction

• Modern reliability methods include dynamic (time-
dependent) properties

• Designed to model and analyze modern digital 
instrumentation and control systems

• Potential for more accurate modelling of FPGA-
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• Potential for more accurate modelling of FPGA-
based systems

• Dynamic modelling of test systems and 
comparisons with Fault Tree results

• Method chosen was the “Dynamic Flowgraph 
Methodology” (DFM)



Research PurposeResearch Purpose

• Compare traditional and modern safety 
analysis methods for analysis of FPGA-based 
I&C systems
– Compare similarities/differences

– Evaluate strengths/weaknesses of each method
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– Evaluate strengths/weaknesses of each method



DFM BackgroundDFM Background

• Dynamic Flowgraph Methodology 

• Inductive and Deductive Analysis

• Dynamic (Time Dependence)

• Equivalent of Fault Tree and FMEA in one model
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• Equivalent of Fault Tree and FMEA in one model

• Probabilities and Uncertainties

• Used in Nuclear and Aerospace Applications

• ASCA Inc. (Applied Science Consulting Firm)

• Dymonda Software

• VTT (Finland) created a separate version



DFM Background (Models)DFM Background (Models)

• Directed Graph Model (Signal Flow Graph)
– All DFM models contain nodes, transfer boxes, edges

• Nodes: 
– Process Variables
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– Process Variables

• Transfer/Transition Boxes:
– Describe relationship/transfer function (Transition Tables)

• Edges
– Connect Nodes/Boxes



DFM Background (Rationale)DFM Background (Rationale)

• Time Dependant
– Feedback

– Control Loops

• Multi Valued Logic (MVL)
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• Multi Valued Logic (MVL)

• Complete System Model

• Issues
– Computationally intensive (“State Explosion”)

– Need detailed information



DFM TheoryDFM Theory

• Minimal Cut Set (MCS)1,2

– A set of events that cause the top event if 
they occur (Cut Set)

– A cut set that does not contain other cut sets 
as a subset (MCS)
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as a subset (MCS)

(1)

(2)



DFM TheoryDFM Theory

• Multi Valued Logic
– Each node has an arbitrary number of states

– Prime Implicant (PI) is the MVL version of MCS
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• Base:
– Set of PIs that are the logical analog of the TOP 

function

– Irredundant Base: Not a base if any PI removed

– Complete Base: All PI for that Top Event



DFM TheoryDFM Theory

• Restrictions on DFM Analysis
– Physical Consistency Rules

– Variable must take on one state

– Cannot have multiple states (per time step)

– Sum of PI gives Top Event1,2

10Canadian Nuclear Safety Commission

– Sum of PI gives Top Event1,2

(3)

(4)

(5)



DFM Theory and Dymonda (Software)DFM Theory and Dymonda (Software)

• Timed Fault Tree (TFT) Construction

– System backtracks through model from top 
event

– Order based on model’s logical sequence 
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• Timed Prime Implicant (TPI) Identification

– Software creates “Critical Transition Table”

– Logic reduction operations produce PIs



Dymonda Features (Software)Dymonda Features (Software)

• Dynamic Consistency Rules
– Increasing/Decreasing

– Rate Rules

– Sink States
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• Probabilities and Uncertainties

• Exact Quantification (EQ)
– Standard DFM probability is the sum of all PI

– Convert PI to “Mutually Exclusive Implicants” (MEI)



DFM vs Fault Tree ComparisonDFM vs Fault Tree Comparison

• DFM/Dymonda designed to model digital control systems

– FPGA-based systems are digital systems

– Potential for better modeling and analysis

• Little information on comparisons between results from 
Fault Tree Analysis (FTA) and DFM models2
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Fault Tree Analysis (FTA) and DFM models2

• More research should be done to compare these methods

• CAFTA software (EPRI) used to create fault trees for 
comparison



DFM vs Fault Tree ComparisonDFM vs Fault Tree Comparison

• Some Comparisons from US NRC documents

• “…the application of the DFM or Markov/CCMT 
techniques has been capable of identifying 
several risk relevant sequences that were not 
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several risk relevant sequences that were not 
included in conventional PRA models.”3

• “…, the ET/FT approach has been found to 
overestimate the predicted Top Event 
frequencies”4



DFM and FTA (Preliminary Comparison)DFM and FTA (Preliminary Comparison)

• Preliminary DFM/FTA Comparisons
• Static systems

• Simple dynamic systems (register)

– Preliminary Results
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– Preliminary Results
• Same results for static systems 

• Very similar results for simple dynamic systems

• Next phase involved a more complex dynamic 
system



Test SystemTest System

• Modelling will be performed on a test system

– Reactor Trip Logic developed with a reference to:

• EPRI TR-1093905
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• Westinghouse AP1000 (Ch. 7)6,7

– Sub-Systems include

• Analog-to-Digital Converter (ADC)

• Sanity Check (SC)

• Trip Parameter Calculation (Overtemperature)

• Comparator (COMP)



Test SystemTest System

• Test System
– Single Channel, Single Parameter (Over Temperature)

– Three redundant circuits with voting logic

• Difference from US NRC Research
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• Difference from US NRC Research
– NRC project took a macroscopic approach

• Complete system (Computer, Valve, Pumps, etc)

– This project focused on design of FPGA-based systems
• Considered registers, mux, decoders, logic gates, etc.

• Failure modes due to SEE, aging process and human factors

• Common Cause Failures (CCF) not included at this point 



Test System Model (Overview)Test System Model (Overview)
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High Level Block Diagram for FPGA-based Test System



Test System Model (COMP)Test System Model (COMP)
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FPGA Comparator Flowgraph Model5,6



Test System AnalysisTest System Analysis

• Two Top Events
– Spurious Trip 

– Missed Trip
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• Comparison Included Several Factors:
– Total Probability

– Number of PI/MCS

– Similarities/Differences between PI/MCS

– Birnbaum Structural Importance (BSI) Measures



Comparison Results (Top Event)Comparison Results (Top Event)

Model Clock 

State

CSG DPC MCS #

Missed Trip 1 6.67E-05 1.09E-05 1079

Missed Trip 0 1.27E-08 4.25E-09 9

Spurious 

Trip

1 1.35E-06 1.59E-06 663

Spurious 0 2.03E-06 7.10E-07 69

Model SUM/MCSUB EQ PI #

Missed Trip 1.556E-05 1.554E-05 53

Spurious Trip 3.117E-05 3.116E-05 63
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Spurious 

Trip

0 2.03E-06 7.10E-07 69

FTA (CAFTA) Results DFM (Dymonda) Results

Nomenclature:
CSG (Cut Set Generator)
DPC (Direct Probability Calculator)
MCSUB (Minimal Cut Set Upper Bound)
EQ (Exact Quantification)



Comparison Results (PI/MCS)Comparison Results (PI/MCS)

Node State Time Step Probability Node State Time Step Probability

(Error States Shown in Red)
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Node State Time Step Probability

Clock 1 -1 N/A

SEGR SEGR_Fail -1 5.95E-04

SEU (T) No SEU 0 N/A

Circuit “B” 0 0 2.285E-03

PI Probability: 1.359E-06

Node State Time Step Probability

Clock 0 -1 N/A

Trip_Reg
(Prev)

1 -1 N/A

SEU (T) SEU 0 6.53E-05

Circuit “C” 0 0 2.285E-03

PI Probability: 1.492E-07

Different PI/MCS
(Missed Trip)

Similar PI/MCS
(Missed Trip)



Comparison Results (BSI)Comparison Results (BSI)

Node DFM FTA
(Clock 0)

FTA
(Clock 1)

SEU (T) 0.981 0.996 0.999

CE (D) 0.825 0.996 0.999

Birnbaum Structural Importance (BSI):
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CE (D) 0.825 0.996 0.999

SHE (P) 0.698 0.996 0.998

SED (Q)
(DFM)

0.667 0.98 0.997

SEGR 
(FTA)

0.475 0.996 0.998

SEDB 
(FTA)

0.475 0.996 0.998

Node BSI Comparison

•Compares relative component importance
•Number of PI/MCS containing a node/state 
divided by the total

number of PI/MCS 
•Does not require probabilities



Potential DifferencesPotential Differences

• Potential reasons for differences between DFM 
and FTA results:
– Initial Conditions

– Time Steps

– Retention
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– Retention

– Circular Logic

– Truncation



ConclusionConclusion

• DFM is a form of Time-Dependent reliability analysis that 
can be performed using the Dymonda software

• FMEA data used to inject failures into test system
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• FTA  and DFM analysis performed on test system

• Preliminary Results:

– Similar results for static and simple dynamic systems

– Noticeable differences for large, dynamic systems

– Future work including
• Common Cause Failures

• Quantitative Measures (Sensitivity, Importance measures)
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The EndThe End

• Thank you for your time
– Questions?
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E-mail: phillip.mcnelles@canada.ca
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