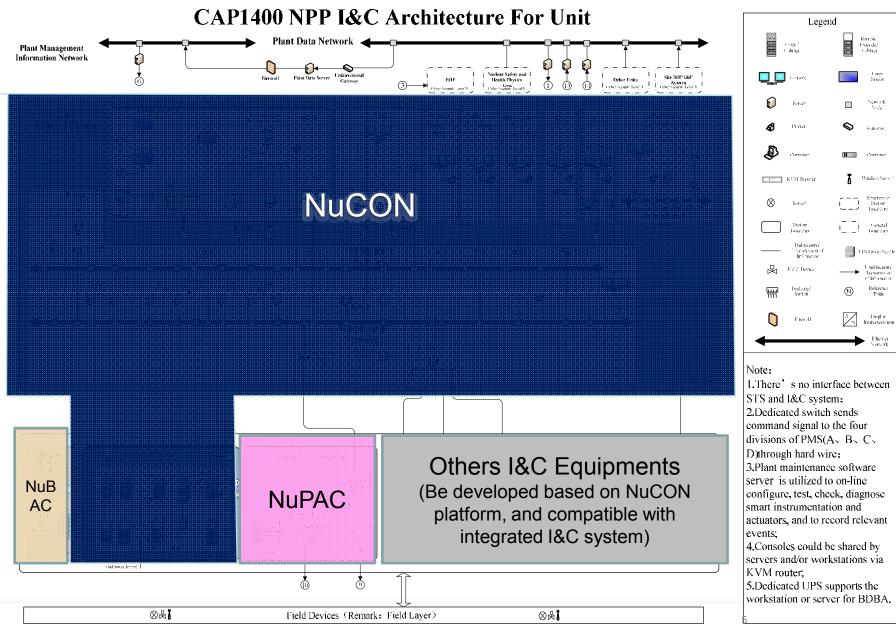


©SNPTC 2015. All rights reserved.

- 1. Integrated I&C Solution of CAP1400
- 2. Diversity Requirements and Assessment
- 3. Diversity between different process chips
- 4. Conclusion

Large Street


Etherner Network

Products

1.Integrated I&C Solution of CAP1400

NuCON

Main Features

■ All hardware including modules, chassis, and operator workstation are qualified as Seismic category I equipment;

□ Cyber Security level 3 compliance per GB/T 22239—2008 Information security technology— Baseline for classified protection of information system

□100M/1000M M-net, redundant 100M/1000M R-net, redundant 100M IO-net

□ All redundant controllers configuration with minimum processing cycle of 10ms, one type controller for all applications in NPP

□ Multi-function I/O components to minimize types, reduce the maintenance cost

□ Signal channel to channel isolation

□ Hot swap capability

D SOE function integrated in DI module, Time Resolution less than 1ms

 \square Operation conditions: operation temp -25 \sim 60 $^{\circ}$ C, relative humidity 5% \sim 95%

□ Standard IEC 61000 EMC and/or MIL EMC standard compliant

CE, FCC, CCC certified, IEC 61508 SIL-3 certification is in process

□ Stainless steel chassis/cabinets available for in-containment application

©SNPTC 2015.All rights reserved.

1.Integrated I&C Solution of CAP1400

NuPAC

Reliable safety I&C platform with dedicated design, state of art technology and complete source code (VHDL) IV&V, being reviewed by NRC and NNSA

1.Integrated I&C Solution of CAP1400

NuPAC

Main Features

Firmware technology (FPGA) Vs Software (CPU) technology, Diverse Safety and operational I&C

Meet both China NNSA and U.S NRC regulation requirements

□ No third party IP source code, increase verifiability and protection from cyber attack

D Reduce risk caused by complex commercial software and operational environment

5Mb/s Point- to-point RS422/485 to reduce the communication uncertainty

Redundant point-to-point backplane bus in chassis

GPA chips provide Long-term lifetime support and portability when upgrading

□ Function distribution among GLMs in each safety division (no central controllers)

□ Flexible configuration for different RPS system-level architecture

Minimum standardization and modularization components, reduce the maintenance cost

 \square Wide range operation conditions: operation temp 4 \sim 60 $^{\circ}$ C, relative humidity 5% \sim 95%

□ IEC 61000 and/or MIL EMC standard compliant, Category I Seismic qualification

Hot swap capability, and complete signal channel to channel isolation

□ MTBF of mezzanine card is greater than 170,000 hours

NuBAC- Diverse Actuation System

- Non-class 1E system, is the backup of RPS, SSE qualified.
- Provide defense-in-depth when common cause failure happen in RPS;
- The protect functions of DAS is diverse with RPS.

- 1. Integrated I&C Solution of CAP1400
- 2. Diversity Requirements and Assessment
- 3. Diversity between different process chips
- 4. Conclusion

Requirement 24: Common cause failures

The design of equipment shall take due account of the potential for <u>common</u> <u>cause failures of items important to safety</u>, to determine how the concepts of **diversity**, redundancy, physical separation and functional independence have to be applied to achieve the necessary reliability.

---- No. SSR-2/1 Safety of Nuclear Power Plants: Design

4.23. Diversity in I&C systems is the principle of monitoring different parameters, <u>using different technologies</u>, <u>different logic or algorithms</u>, <u>or</u> <u>different means of actuation</u> in order to provide several ways of detecting and responding to a significant event.

4.25. The adequacy of the diversity provided with respect to the above criteria should be justified.

4.28. Claims for diversity based only on a difference in manufacturers' names are insufficient without consideration of this possibility.

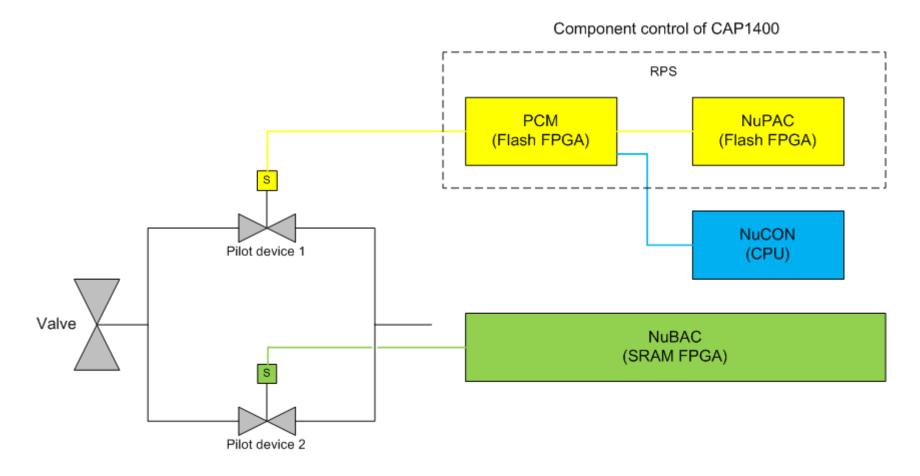
4.29. With regard to the diversity of software, experience indicates that independence of failure modes may not be achieved if multiple versions of software are developed to the same software requirements specification.

---- No. NS-G-1.3 Instrumentation and Control Systems Important to Safety in Nuclear Power Plants

2. Diversity Requirements and Assessment

	NuPAC	NuCON	NuBAC
CM Tool	 Windchill Rational ClearCase Rational ClearQuest Rational DOORS Mentor Reqtracer(Mentor Graphic) Mentor library manager(Mentor Graphic) 	 Windchill Rational ClearCase Rational ClearQuest Rational DOORS 	Rational DOORS
Electronics Development Tool	 Mentor Design Capture Mentor Expedition PTC Creo OrCAD Pspice 	Cadence	Altium
PL/Software Development Tool	 Actel libero IDE Windriver WorkBench Mentor Modelsim Aldec Riviera VHDL 	 Visual studio 2010、 QNX Momentics DD IDE Verilog HDL 	•Quartus •C Language
Operating System	 VxWorks (for safety parameter video display only) 	• Windows 7(HMI) • QNX 6.5(controller)	1
Chip	Flash based FPGA (Microsemi Corporation)	CPU	SRAM based FPGA (Altera)
PCB Vendor	 P.C.B.A Electronics (Wuxi) Ltd. Shanghai Dahua Instrument Factory 	 Advantech Co. Ltd Adlink Technology Inc 	Suyuan Electronics Ltd.
Program Team	 Development Team Test Team IV&V Team Third party IV&V Team 	 Development Team Test Team 	 Development Team (third party - SAIC) Test Team

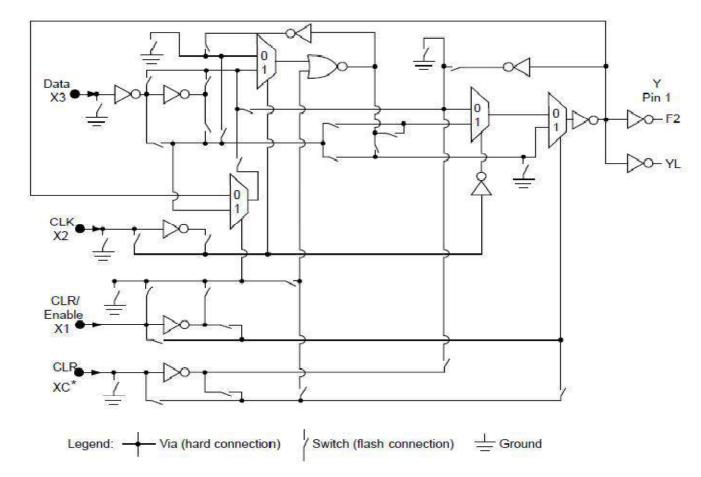
Defense in Depth and Diversity (D3) Compliance


	Strategy											
	Diversity Attributety	A1	A2	B1	B2	B 3	C1	C2	C3	C4	C5	
	Different technology	x	x									
Design	Different approach-same technology			x	x	x						
-	Different architecture	i	i	i	i	i	x	X	x	x	x	
	Different manufacturer-different design	х		х	_	х			_	_	_	
Equipment	Same manufacture-different design	_	х	_	х				_	_	_	
manufacture	Different manufacture-same design	_		—	_		х		х	х	х	
	Same manufacture-different version	_		—	_			х		_		
Logio	Different logic processing architecture	i	i	i	i	i	х	х		х	х	
Logic	Different logic processing version in same architecture	_		—	_				х	_		
processing	Different component integration architecture	i	i	i	i	i			х	_		
equipment	Different data-flow architecture	i	i	_	—	_	_		—	—		
	Different underlying mechnism	i	i	i	i	i			—			
Functional	Different purpose, function, control, logic, or actuation											
Functional	means	i	i	х	х	х	х	х	х	х	х	
	Different response time scale			—	—		—				_	
	Different design organizations/companies	х		х		х	х		х	х	х	
	Different management teams within same company	—	х	—	Х		—	Х	—	—		NURE(7007
Life-cycle	Different design/development teams (designers, engineers,										_	1001
	programmers)	İ	İ	İ	Х	İ	i	Х	i	i	İ	-
	Different implementation/validation teams (testers,											
	installers, or certification personnel) Different parameters sensed by different physical effects				X	i	i	X		i		
	Different parameters sensed by same physical effects	X	X	X	X		Х	X	X	X	X	
Signal	Same parameter sensed by a different redundant set of	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	
	similar sensors	x	х	x	x	х	х	x	x	x	х	
Logic	Different algorithms, logic, and program architecture	i	i	x		×		X	x	x	X	-
	Different timing or order of execution	i	i	i	i	i				Ê		1.000
	Different runtime environment	i	i	i	i	i	x	x	x	х	-	国家移由
	Different functional representation	;		i	 	;	^ X	x		×	•	国家核电 SNPTC
SNPTC 2015 All righ	x: intentional diversity, i: inherent diversity, -: not a	nnl	icah		n n	n ir			<u> </u>	^	^	8 6

2. Diversity Requirements and Assessment

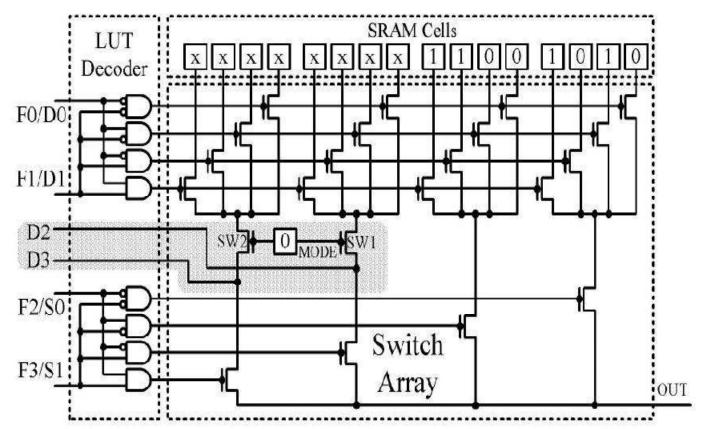
- 1. Integrated I&C Solution of CAP1400
- 2. Diversity Requirements and Assessment
- 3. Diversity between different process chips
- 4. Conclusion

How diverse it shall be if both systems use FPGA?

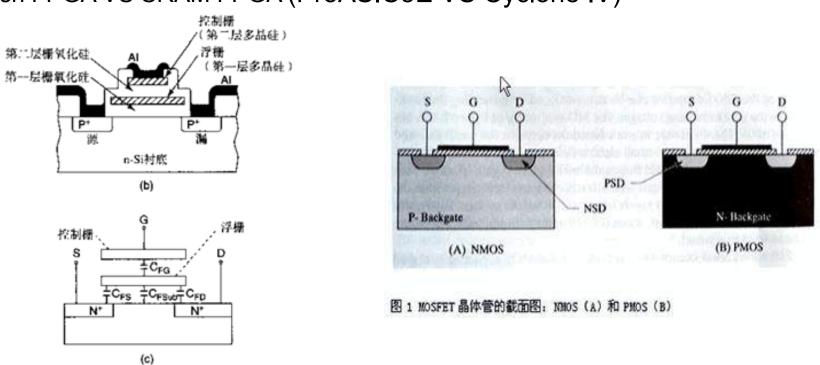

Diversity Attribute			DOF	Strategy name									
		Rank	DCE WT	A				В		С			
				INT	INH	Score	INT	INH	Score	INT	INH	Score	
Design	Different technology	1	0.500	Х		0.500							
	Different approach-same technology	2	0.333				x		0.333				
	Different architecture	3	0.167		i	0.167		·	0.167	X		0.167	

Intentional diversity is provided through the selection of distinct technology approaches. The specific form of technology difference employed in this classification involves the use of different digital technologies (e.g., FPGA or CPLD vs general-purpose CPU) as the basis for different systems, redundancies, or subsystems.

What about different FPGA technology?


Flash FPGA VS SRAM FPGA (ProASIC3E VS Cyclone IV)

Versatile architecture of FLASH FPGA: switches stored in FLASH unit are configurable to realize different hardware logic



Lookup table architecture of SRAM FPGA: truth table stored in SRAM cells is used to realize different hardware logic

3. Difference between different FPGA chips

Flash FPGA VS SRAM FPGA (ProASIC3E VS Cyclone IV)

Flash transistor

SRAM transistor

Flash FPGA VS SRAM FPGA (ProASIC3E VS Cyclone IV)

No.	difference	FLASH FPGA	SRAM FPGA
1	CLB architecture	Versatile	Look up table
2	Logic storage cell	Flash connection	SRAM cell
3	Transistor architecture	Transistor contains 2 layers of Polysilicon (to form floating gate as storage cell)	Transistor contains one layer of Polysilicon (to store data with one pair of coupled inverters)
4	size	130nm	60nm
5	Power off characteristic	Data is retained when power is off	Data is lost when power is off
6	Configuration chip	No need	Configuration chip is needed for start-up
7	manufacture	UMC	TSMC
8	Designer	Microsemi	Altera
9	Tool	Libero	Quartus
10	Language	VHDL	Verilog

©SNPTC 2015.All rights reserved.

Flash FPGA VS SRAM FPGA

➢ There is big difference between FLASH FPGA and SRAM FPGA, adequate mitigation of potential CCF vulnerabilities will be provided by these 2 distinctly different technology per NUREG 7007.

It is justifiable to take FLASH FPGA and SRAM FPGA as distinctly different approach per NUREG 7007, and follow Strategy B ways to evaluate the Diversity of corresponding systems.

	Diversity Attribute		DOF	Strategy name										
			DCE WT	A			B			C				
				INT	INH	Score	INT	INH	Score	INT	INH	Score		
	Different technology	1	0.500	х		0.500								
Design	Different approach-same technology	2	0.333				x		0.333					
	Different architecture	3	0.167		i	0.167		i	0.167	х		0.167		
Equipm ent manufac turer	Different manufacturer - different design	1	0.400	x		0.400	x		0.400					
	Same manufacturer-different design	2	0.300											
	Different manufacturer-same design	3	0.200							x		0.200		
	Same manufacturerdifferent version	4	0.100								1			

- 1. Integrated I&C Solution of CAP1400
- 2. Diversity Requirements and Assessment
- 3. Diversity between different process chips
- 4. Conclusion

There is big difference between FLASH FPGA and SRAM FPGA, adequate mitigation of potential CCF vulnerabilities will be provided by these 2 distinctly different technology, and It is justifiable to take FLASH FPGA and SRAM FPGA as distinctly different approach per NUREG 7007, and follow Strategy B ways to evaluate the Diversity of corresponding systems.

"Nu" serial of products provide diverse integrated solution for NPP I&C systems, with state of art technologies utilized in CAP1400 design.

本文件的知识产权属国家核电技术有限公司及其相关产权人所有,并含有其保密信息。对本文件的使用及处置应严格遵循获取本文件的合同及约定的条件和要求。 未经国家核电技术有限公司事先书面同意,不得对外披露、复制。

This document is the property of and contains proprietary information owned by SNPTC and/or its related proprietor. You agree to treat this document in strict accordance with the terms and conditions of the agreement under which it was provided to you. No disclosure or copy of this document is permitted without the prior written permission of SNPTC.